249 resultados para LEYDIG-CELL HYPOPLASIA
em University of Queensland eSpace - Australia
Resumo:
We report a 12-month-old infant who presented with a 4-month history of isosexual precocious puberty secondary to an estrogenizing Sertoli-Leydig cell tumor of the ovary. Total serum immunoreactive inhibin and subunits A and B were markedly elevated before surgical resection and subsequently decreased 7 wk later into the normal prepubertal range. Twenty weeks following surgical removal, the patient presented again with central precocious puberty; inhibin B levels were raised on this occasion, a luteinizing releasing hormone stimulation test confirmed central precocious puberty. This is the youngest reported occurrence of this rare sex cord stromal neoplasm. The prognosis of this extremely rare tumor presenting at this early juvenile stage is uncertain. This report illustrates the usefulness of serum inhibin as a tumor marker during therapeutic suppression with leuprorelin acetate for central precocious puberty. Analysis of genomic and tumor DNA revealed a normal nucleotide sequence for the LH receptor and the G{alpha}s gene. To understand the molecular pathogenesis of this tumor we analyzed mRNA levels for the inhibin A and B subunits, FSH receptor, LH receptor aromatase, steroidogenic factor-1 and the ER ß genes. Molecular characterization reveals the presence of genes specific for granulosa and Leydig cells; the relative expression of these genes, in addition to its histologic characteristics, suggests that this tumor may result from a dysdifferentiation of a primordial follicle.
Resumo:
The gene encoding the matricellular protein secreted protein, acidic and rich in cysteine (SPARC) was identified in a screen for genes expressed sex-specifically during mouse gonad development, as being strongly upregulated in the male gonad from very early in testis development. We present here a detailed analysis of SPARC gene and protein expression during testis development, from 11.5 to 15.5 days post coitum (dpc). Section in situ hybridization analysis revealed that SPARC mRNA is expressed by the Sertoli cells in the testis cords and the fetal Leydig cells, found within the interstitial space between the testis cords. Immunodetection with anti-SPARC antibody showed that the protein was located inside the testis cords, within the cytoplasm of Sertoli and germ cells. In the interstitium, SPARC was present intracellularly within the Leydig cells. The internalization of SPARC in Sertoli, Leydig, and germ cells suggests that it plays an intracellular regulatory role in these cell types during fetal testis development.
Resumo:
To facilitate the study of the regulation and downstream interactions of genes involved in gonad development it is important to have a suitable cell culture model. We therefore aimed to characterize molecularly three different mouse gonad cell lines. TM3 and TM4 cells were originally isolated from prepubertal mouse gonads and were tentatively identified as being of Leydig cell and Sertoli cell origin, respectively, based upon their morphology and hormonal responses. The third line is a conditionally immortalized cell line, derived from 10.5-11.5 days post-coitum (dpc) male gonads of transgenic embryos carrying a temperature-sensitive SV40 large T-antigen. We studied by reverse transcription-polymerase chain reaction (RT-PCR) the expression profiles of a number of genes known to be important for early gonad development. Moreover, we assessed these cell lines for their capacity to induce Sox9 transcription upon expression of Sry, a key molecular event occurring during sex determination. We found that all three cell lines were unable to upregulate Sox9 expression upon transfection of Sry-expression constructs, even though these cells express many of the studied embryonic gonad genes. These observations point to a requirement for SRY cofactors for direct or indirect upregulation of Sox9 expression during testis determination. Copyright © 2003 S. Karger AG, Basel
Resumo:
The reproductive biology of the large-footed myotis, Myotis moluccarum, was studied during the annual breeding season in southeast Queensland, Australia. Previous research has shown the species to be polyoestrous and monotoccous, producing two consecutive young with some degree of synchrony in late October to early November and again in late January to early February. Hormonal data was collected and observations of the female reproductive tract made in order to ascertain the reproductive cycle of this species. In July, when females were not pregnant, progesterone concentrations were 1.9 +/- 0.9 ng/ml. During the two gestation periods, progesterone concentrations increased progressively until late pregnancy at the end of October through to early November and again in late January to early February. During the latest stages of pregnancy, progesterone concentrations of 69.9 +/- 18.7 ng/ml were reached. It is suggested that a plasma progesterone concentration in excess of about 8 ng/ml indicates pregnancy in this species. Plasma testosterone concentration in males reached a peak of 43.1 +/- 9.81 ng/ml in July, and was then variable until December when levels declined significantly to 2.0 +/- 1.7 ng/ml.
Resumo:
Environmental issues due to increases in emissions of air pollutants and greenhouse gases are driving the development of clean energy delivery technologies such as fuel cells. Low temperature Proton Exchange Membrane Fuel Cells (PEMFC) use hydrogen as a fuel and their only emission is water. While significant advances have been made in recent years, a major limitation of the current technology is the cost and materials limitations of the proton conduction membrane. The proton exchange membrane performs three critical functions in the PEMFC membrane electrode assembly (MEA): (i) conduction of protons with minimal resistance from the anode (where they are generated from hydrogen) to the cathode (where they combine with oxygen and electrons, from the external circuit or load), (ii) providing electrical insulation between the anode and cathode to prevent shorting, and (iii) providing a gas impermeable barrier to prevent mixing of the fuel (hydrogen) and oxidant. The PFSA (perfluorosulphonic acid) family of membranes is currently the best developed proton conduction membrane commercially available, but these materials are limited to operation below 100oC (typically 80oC, or lower) due to the thermochemical limitations of this polymer. For both mobile and stationary applications, fuel cell companies require more durable, cost effective membrane technologies capable of delivering enhanced performance at higher temperatures (typically 120oC, or higher. This is driving research into a wide range of novel organic and inorganic materials with the potential to be good proton conductors and form coherent membranes. There are several research efforts recently reported in the literature employing inorganic nanomaterials. These include functionalised silica phosphates [1,2], fullerene [3] titania phosphates [4], zirconium pyrophosphate [5]. This work addresses the functionalisation of titania particles with phosphoric acid. Proton conductivity measurements are given together with structural properties.
Resumo:
MSS membranes are a good candidate for CO cleanup in fuel cell fuel processing systems due to their ability to selectively permeate H2 over CO via molecular sieving. Successfully scaled up tubular membranes were stable under dry conditions to 400°C with H2 permeance as high as 2 x 10-6 mol.m-2.s^-1.Pa^-1 at 200 degrees C and H2/CO selectivity up to 6.4, indicating molecular sieving was the dominant mechanism. A novel carbonised template molecular sieve silica (CTMSS) technology gave the scaled up membranes resilience in hydrothermal conditions up to 400 degrees C in 34% steam and synthetic reformate, which is required for use in fuel cell CO cleanup systems.
Resumo:
Wolbachia pipientis is an obligate intracellular endosymbiont of a range of arthropod species. The microbe is best known for its manipulations of host reproduction that include inducing cytoplasmic incompatibility, parthenogenesis, feminization, and male-killing. Like other vertically transmitted intracellular symbionts, Wolbachiarsquos replication rate must not outpace that of its host cells if it is to remain benign. The mosquito Aedes albopictus is naturally infected both singly and doubly with different strains of Wolbachia pipientis. During diapause in mosquito eggs, no host cell division is believed to occur. Further development is triggered only by subsequent exposure of the egg to water. This study uses diapause in Wolbachia-infected Aedes albopictus eggs to determine whether symbiont replication slows or stops when host cell division ceases or whether it continues at a low but constant rate. We have shown that Wolbachia densities in eggs are greatest during embryonation and then decline throughout diapause, suggesting that Wolbachia replication is dependent on host cell replication.
Resumo:
Studies were undertaken to determine if replication-deficient Semliki Forest virus expression vectors could be successfully used to express foreign gene constructs in insect cell lines. Using green fluorescent protein (GFP) as a marker we recorded infection levels of nearly 100% in the Aedes albopictus cell lines C6/36 and Aa23T, as well as in the Ae. aegypti cell line MOS20. The virus was capable of infecting an Anopheles gambiae cell line MOS55. The amount of GFP protein produced in each cell line was quantified. Northern analysis of viral transcription revealed the presence of novel transcripts in Aa23T, C6/36, and MOS55 cell lines, but not in the BHK or MOS20. The initial characterization of these transcripts is described.
Resumo:
A continuous cell line, Aa23, was established from eggs of a strain of the Asian tiger mosquito, Aedes albopictus, naturally infected with the intracellular symbiont Wolbachia pipientis. The resulting cell line was shown to be persistently infected with the bacterial endosymbiont. Treatment with antibiotics cured the cells of the infection. In the course of establishing this cell line it was noticed that RFLPs in the PCR products of two Wolbachia genes from the parental mosquitoes were fixed in the infected cell line. This indicates that the mosquito host was naturally superinfected with different Wolbachia strains, whereas the infected cell line derived from these mosquitoes only contained one of the original Wolbachia strains. The development of anin vitroculture system for this fastidious microorganism should facilitate molecular analysis of the reproduction distorting phenotypes it induces in natural arthropod hosts.
Resumo:
A diagnostic PCR assay was designed based on conserved regions of previously sequenced densovirus genomic DNA isolated from mosquitoes. Application of this assay to different insect cell lines resulted in a number of cases of consistent positive amplification of the predicted size fragment. Positive PCR results were subsequently confirmed to correlate with densovirus infection by both electron microscopy and indirect fluorescent antibody test. In each case the nucleotide sequence of the amplified PCR fragments showed high identity to previously reported densoviruses isolated from mosquitoes. Phylogenetic analysis based on these sequences showed that two of these isolates were examples of new densoviruses. These viruses could infect and replicate in mosquitoes when administered orally or parenterally and these infections were largely avirulent. In one virus/mosquito combination vertical transmission to progeny was observed. The frequency with which these viruses were detected would suggest that they may be quite common in insect cell lines.
Resumo:
Transient response of an adsorbing or non-adsorbing tracer injected as step or square pulse input in a diffusion cell with two flowing streams across the pellet is theoretically investigated in this paper. Exact solutions and the asymptotic solutions in the time domain and in three different limits are obtained by using an integral transform technique and a singular perturbation technique, respectively. Parametric dependence of the concentrations in the top and bottom chambers can be revealed by investigating the asymptotic solutions, which are far simpler than their exact counterpart. In the time domain investigation, it is found that the bottom-chamber concentration is very sensitive to the value of the macropore effective diffusivity. Therefore this concentration could be used to extract diffusivity by fitting in the time domain. The bottom-chamber concentration is also sensitive to flow rate, pellet length chamber volume and the type of input (step and square input).
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries, in particular, from explosions. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel for its simplicity and sufficiency for practical engineering design problems. The code uses a finite-volume formulation of the unsteady Euler equations with a second order explicit Runge-Kutta Godonov (MUSCL) scheme. Gradients are calculated using a least-squares method with a minmod limiter. Flux solvers used are AUSM, AUSMDV and EFM. No fluid-structure coupling or chemical reactions are allowed, but gas models can be perfect gas and JWL or JWLB for the explosive products. This report also describes the code’s ‘octree’ mesh adaptive capability and point-inclusion query procedures for the VCE geometry engine. Finally, some space will also be devoted to describing code parallelization using the shared-memory OpenMP paradigm. The user manual to the code is to be found in the companion report 2007/13.