6 resultados para LEVEL TRANSIENT SPECTROSCOPY
em University of Queensland eSpace - Australia
Resumo:
To increase transient expression of recombinant proteins in Chinese hamster ovary cells, we have engineered their protein synthetic capacity by directed manipulation of mRNA translation initiation. To control this process we constructed a nonphosphorylatable Ser51Ala site-directed mutant of eIF2, a subunit of the trimeric eIF2 complex that is implicated in regulation of the global rate of mRNA translation initiation in eukaryotic cells. Phosphorylation of eIF2 by protein kinases inhibits eIF2 activity and is known to increase as cells perceive a range of stress conditions. Using single-and dual-gene plasmids introduced into CHO cells by electroporation, we found that transient expression of the eIF2 Ser51Ala mutant with firefly luciferase resulted in a 3-fold increase in reporter activity, relative to cells transfected with reporter only. This effect was maintained in transfected cells for at least 48 h after transfection. Expression of the wild-type eIF2 protein had no such effect. Elevated luciferase activity was associated with a reduction in the level of eIF2 phosphorylation in cells transfected with the mutant eIF2 construct. Transfection of CHO cells with the luciferase-only construct resulted in a marked decrease in the global rate of protein synthesis in the whole cell population 6 h post-transfection. However, expression of the mutant Ser51Ala or wild-type eIF2 proteins restored the rate of protein synthesis in transfected cells to a level equivalent to or exceeding that of control cells. Associated with this, entry of plasmid DNA into cells during electroporation was visualized by confocal microscopy using a rhodamine-labeled plasmid construct expressing green fluorescent protein. Six hours after transfection, plasmid DNA was present in all cells, albeit to a variable extent. These data suggest that entry of naked DNA into the cell itself functions to inhibit protein synthesis by signaling mechanisms affecting control of mRNA translation by eIF2. This work therefore forms the basis of a rational strategy to generically up-regulate transient expression of recombinant proteins by simultaneous host cell engineering.
Resumo:
We have developed a simple and robust transient expression system utilizing the 25 kDa branched cationic polymer polyethylenimine (PEI) as a vehicle to deliver plasmid DNA into suspension-adapted Chinese hamster ovary cells synchronized in G2/M phase of the cell cycle by anti-mitotic microtubule disrupting agents. The PEI-mediated transfection process was optimized with respect to PEI nitrogen to DNA phosphate molar ratio and the plasmid DNA mass to cell ratio using a reporter construct encoding firefly luciferase. Optimal production of luciferase was observed at a PEI N to DNA P ratio of 10:1 and 5 mug DNA 10(6) cells(-1). To manipulate transgene expression at mitosis, we arrested cells in G2/M phase of the cell cycle using the microtubule depolymerizing agent nocodazole. Using secreted human alkaline phosphatase (SEAP) and enhanced green fluorescent protein (eGFP) as reporters we showed that continued inclusion of nocodazole in cell culture medium significantly increased both transfection efficiency and reporter protein production. In the presence of nocodazole, greater than 90% of cells were eGFP positive 24 h post-transfection and qSEAP was increased almost fivefold, doubling total SEAP production. Under optimal conditions for PEI-mediated transfection, transient production of a recombinant chimeric IgG(4) encoded on a single vector was enhanced twofold by nocodazole, a final yield of approximately 5 mug mL(-1) achieved at an initial viable cell density of 1 x 10(6) cells mL(-1). The glycosylation of the recombinant antibody at Asn(297) was not significantly affected by nocodazole during transient production by this method. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Visible pump-probe spectroscopy has been used to identify and characterize short-lived metal-to-metal charge transfer (MMCT) excited states in a group of cyano-bridged mixed-valence complexes of the formula [(LCoNCMII)-N-III(CN)(5)](-), where L is a pentadentate macrocyclic pentaamine (L-14) or triamine-dithiaether (L-14S) and M is Fe or Ru. Nanosecond pump-probe spectroscopy on frozen solutions of [(LCoNCFeII)-Co-14-N-III(CN)(5)](-) and [(LCoNCFeII)-Co-14S-N-III(CN)(5)](-) at 11 K enabled the construction of difference transient absorption spectra that featured a rise in absorbance in the region of 350-400 nm consistent with the generation of the ferricyanide chromophore of the photoexcited complex. The MMCT excited state of the Ru analogue [(LCoNCRuII)-Co-14-N-III(CN)(5)](-) was too short-lived to allow its detection. Femtosecond pump-probe spectroscopy on aqueous solutions of [(LCoNCFeII)-Co-14-N-III(CN)(5)](-) and [(LCoNCFeII)-Co-14S-N-III(CN)(5)](-) at room temperature enabled the lifetimes of their Co-II-Fe-III MMCT excited states to be determined as 0.8 and 1.3 ps, respectively.
Resumo:
To examine the genetic controls of endosperm (ES) specificity, several cereal seed storage protein (SSP) promoters were isolated and studied using a transient expression analysis system. An oat globulin promoter (AsGlo1) capable of driving strong ES-specific expression in barley and wheat was identified. Progressive 5' deletions and cis element mutations demonstrated that the mechanism of specificity in the AsGlo1 promoter was distinct from that observed in glutelin and prolamin promoters. A novel interrupted palindromic sequence, ACATGTCAT-CATGT, was required for ES specificity and substantially contributed to expression strength of the AsGlo1 promoter. This sequence was termed the endosperm specificity palindrome (ESP) element. The GCN4 element, which has previously been shown to be required for ES specificity in cereal SSP promoters, had a quantitative role but was not required for tissue specificity. The 960-bp AsGlo1 promoter and a 251-bp deletion containing the ESP element also drove ES-specific expression in stably transformed barley. Reporter gene protein accumulated at very high levels (10% of total soluble protein) in ES tissues of plants transformed with an AsGlo1:GFP construct. Expression strength and tissue specificity were maintained over five transgenic generations. These attributes make the AsGlo1 promoter an ideal promoter for biotechnology applications. In conjunction with previous findings, our data demonstrate that there is more than one genetically distinct mechanism by which ES specificity can be achieved in cereal SSP promoters, and also suggest that there is redundancy between transcriptional and post-transcriptional tissue specificity mechanisms in cereal globulin genes.
Resumo:
In this study we describe optimization of polyethylenimine (PEI)-mediated transient production of recombinant protein by CHO cells by facile manipulation of a chemically defined culture environment to limit accumulation of nonproductive cell biomass, increase the duration of recombinant protein production from transfected plasmid DNA, and increase cell-specific production. The optimal conditions for transient transfection of suspension-adapted CHO cells using branched, 25 kDa PEI as a gene delivery vehicle were experimentally determined by production of secreted alkaline phosphatase reporter in static cultures and recombinant IgG(4) monoclonal antibody (Mab) production in agitated shake flask cultures to be a DNA concentration of 1.25 mu g 10(6) cells(-1) mL(-1) at a PEI nitrogen: DNA phosphate ratio of 20:1. These conditions represented the optimal compromise between PEI cytotoxicity and product yield with most efficient recombinant DNA utilization. Separately, both addition of recombinant insulin-like growth factor (LR3-IGF) and a reduction in culture temperature to 32 degrees C were found to increase product titer 2- and 3-fold, respectively. However, mild hypothermia and LR3-IGF acted synergistically to increase product titer 11-fold. Although increased product titer in the presence of LR3-IGF alone was solely a consequence of increased culture duration, a reduction in culture temperature post-transfection increased both the integral of viable cell concentration (IVC) and cell-specific Mab production rate. For cultures maintained at 32 degrees C in the presence of LR3-IGF, IVC and qMab were increased 4- and 2.5-fold, respectively. To further increase product yield from transfected DNA, the duration of transgene expression in cell populations maintained at 32 C in the presence of LR3-IGF was doubled by periodic resuspension of transfected cells in fresh media, leading to a 3-fold increase in accumulated Mab titer from similar to 13 to similar to 39 mg L-1. Under these conditions, Mab glycosylation at Asn297 remained essentially constant and similar to that of the same Mab produced by stably transfected GS-CHO cells. From these data we suggest that the efficiency of transient production processes (protein output per rDNA input) can be significantly improved using a combination of mild hypothermia and growth factor(s) to yield an extended activated hypothermic synthesis.
Resumo:
Transient expression of Ebola virus (EBOV) glycoprotein GP causes downregulation of surface proteins, cell rounding and detachment, a phenomenon believed to play a central role in the pathogenicity of the virus. In this study, evidence that moderate expression of GP does not result in such morphological changes was provided. It was shown that GP continuously produced in 293T cells from the Kunjin virus replicon was correctly processed and transported to the plasma membrane without affecting the surface expression of beta 1 and alpha 5 integrins and major histocompatibility complex I molecules. The level of GIP expression in Kunjin replicon GP-expressing cells was similar to that observed in cells infected with EBOV early in infection and lower than that produced in cells transfected with plasmid DNA, phCMV-GP(1) expressing GP from a strong promoter. Importantly, transient transfection of Kunjin replicon GIP-expressing cells with GIP-coding plasmid DNA resulted in overexpression of GP, which lead to the downregulation of surface molecules and massive rounding and detachment of transfected cells. Here, it was also demonstrated that cell rounding and downregulation of the surface markers are the late events in EBOV infection, whereas synthesis and massive release of virus particles occur at early steps and do not cause significant cytotoxic effects. These findings indicate that the synthesis of EBOV GP in virus-infected cells is controlled well by several mechanisms that do not allow GP overexpression and hence the early appearance of its cytotoxic properties.