9 resultados para LECITHIN BILAYERS
em University of Queensland eSpace - Australia
Resumo:
Pseudo-ternary phase diagrams of the polar lipids Quil A, cholesterol (Chol) and phosphatidylcholine (PC) in aqueous mixtures prepared by the lipid film hydration method (where dried lipid film of phospholipids and cholesterol are hydrated by an aqueous solution of Quil A) were investigated in terms of the types of particulate structures formed therein. Negative staining transmission electron microscopy and polarized light microscopy were used to characterize the colloidal and coarse dispersed particles present in the systems. Pseudo-ternary phase diagrams were established for lipid mixtures hydrated in water and in Tris buffer (pH 7.4). The effect of equilibration time was also studied with respect to systems hydrated in water where the samples were stored for 2 months at 4degreesC. Depending on the mass ratio of Quil A, Chol and PC in the systems, various colloidal particles including ISCOM matrices, liposomes, ring-like micelles and worm-like micelles were observed. Other colloidal particles were also observed as minor structures in the presence of these predominant colloids including helices, layered structures and lamellae (hexagonal pattern of ring-like micelles). In terms of the conditions which appeared to promote the formation of ISCOM matrices, the area of the phase diagrams associated with systems containing these structures increased in the order: hydrated in water/short equilibration period < hydrated in buffer/short equilibration period < hydrated in water/prolonged equilibration period. ISCOM matrices appeared to form over time from samples, which initially contained a high concentration of ring-like micelles suggesting that these colloidal structures may be precursors to ISCOM matrix formation. Helices were also frequently found in samples containing ISCOM matrices as a minor colloidal structure. Equilibration time and presence of buffer salts also promoted the formation of liposomes in systems not containing Quil A. These parameters however, did not appear to significantly affect the occurrence and predominance of other structures present in the pseudo-binary systems containing Quil A. Pseudo-ternary phase diagrams of PC, Chol and Quil A are important to identify combinations which will produce different colloidal structures, particularly ISCOM matrices, by the method of lipid film hydration. Colloidal structures comprising these three components are readily prepared by hydration of dried lipid films and may have application in vaccine delivery where the functionality of ISCOMs has clearly been demonstrated. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The effects of a mammalian cyclic antimicrobial peptide, rhesus theta defensin 1 (RTD-1) and its open chain analogue (oRTD-1), on the phase behaviour and structure of model membrane systems (dipalmitoyl phosphatidylcholine, DPPC and dipalmitoyl phosphatidylglycerol, DPPG) were studied. The increased selectivity of RTD-1 for anionic DPPG over zwitterionic DPPC was shown by differential scanning calorimetry. RTD-1, at a molar peptide-lipid ratio of 1:100, induced considerable changes in the phase behaviour of DPPG, but not of DPPC. The main transition temperature, T-m, Was unchanged, but additional phase transitions appeared above T-m. oRTD-1 induced similar effects. However, the effects were not observable below a peptide:lipid molar ratio of 1:50, which correlates with the weaker biological activity of oRTD-1. Small-and wide-angle X-ray scattering revealed for DPPG the appearance of additional structural features induced by RTP-1 above T-m, which were interpreted as correlated lamellar structures, with increased order of the fatty acyl side chains of the lipid. It is proposed that after initial electrostatic interaction of the cationic rim of the peptide with the anionic DPPG headgroups, leading to stabilized lipid-peptide clusters, the hydrophobic face of the peptide assists in its interaction with the fatty acyl side chains eventually leading to membrane disruption. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
The authors evaluated the efficacy of cholinergic drugs in the treatment of neuroleptic-induced tardive dyskinesia (TD) by a systematic review of the literature on the following agents: choline, lecithin, physostigmine, tacrine, 7-methoxyacridine, ipidacrine, galantamine, donepezil, rivastigmine, eptastigmine, metrifonate, arecoline, RS 86, xanomeline, cevimeline, deanol, and meclofenoxate. All relevant randomized controlled trials, without any language or year limitations, were obtained from the Cochrane Schizophrenia Group's Register of Trials. Trials were classified according to their methodological quality. For binary and continuous data, relative risks (RR) and weighted or standardized mean differences (SMD) were calculated, respectively. Eleven trials with a total of 261 randomized patients were included in the meta-analysis. Cholinergic drugs showed a minor trend for improvement of tardive dyskinesia symptoms, but results were not statistically significant (RR 0.84, 95% confidence interval (CI) 0.68 to 1.04, p=0.11). Despite an extensive search of the literature, eligible data for the meta-analysis were few and no results reached statistical significance. In conclusion, we found no evidence to support administration of the old cholinergic agents lecithin, deanol, and meclofenoxate to patients with tardive dyskinesia. In addition, two trials were found on novel cholinergic Alzheimer drugs in tardive dyskinesia, one of which was ongoing. Further investigation of the clinical effects of novel cholinergic agents in tardive dyskinesia is warranted. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The purpose of this study was to systematically investigate the effect of lipid chain length and number of lipid chains present on lipopeptides on their ability to be incorporated within liposomes. The peptide KAVYNFATM was synthesized and conjugated to lipoamino acids having acyl chain lengths of C-8, C-12 and C-16. The C-12 construct was also prepared in the monomeric, dimeric and trimeric form. Liposomes were prepared by two techniques: hydration of dried lipid films (Bangham method) and hydration of freeze-dried monophase systems. Encapsulation of lipopeptide within liposomes prepared by hydration of dried lipid films was incomplete in all cases ranging from an entrapment efficiency of 70% for monomeric lipoamino acids at a 5% (w/w) loading to less than 20% for di- and trimeric forms at loadings of 20% (w/w). The incomplete entrapment of lipopeptides within liposomes appeared to be a result of the different solubilities of the lipopeptide and the phospholipids in the solvent used for the preparation of the lipid film. In contrast, encapsulation of lipopeptide within liposomes prepared by hydration of freeze-dried monophase systems was high, even up to a loading of 20% (w/w) and was much less affected by the acyl chain length and number than when liposomes were prepared by hydration of dried lipid films. Freeze drying of monophase systems is better at maintaining a molecular dispersion of the lipopeptide within the solid phospholipid matrix compared to preparation of lipid film by evaporation, particularly if the solubility of the lipopeptide in solvents is markedly different from that of the polar lipids used for liposome preparation. Consequently, upon hydration, the lipopeptide is more efficiently intercalated within the phospholipid bilayers. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to prepare solid Quil A-cholesterol-phospholid formulations (as powder mixtures or compressed to pellets) by physical mixing or by freeze-drying of aqueous dispersions of these components in ratios that allow spontaneous formation of ISCOMs and other colloidal stuctures upon hydration. The effect of addition of excess cholesterol to the lipid mixtures on the release of a model antigen (PE-FITC-OVA) from the pellets was also investigated. Physical properties were evaluated by X-ray powder diffractometry (XPRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and polarized light microscopy (PLM). Characterization of aqueous colloidal dispersions was performed by negative staining transmission electron microscopy (TEM). Physically mixed powders (with or without PE-FITC-OVA) and pellets prepared from the same powders did not spontaneously form ISCOM matrices and related colloidal structures such as worm-like micelles, ring-like micelles, lipidic/layered structures and lamellae (hexagonal array of ring-like micelles) upon hydration as expected from the pseudo-temary diagram for aqueous mixtures of Quil A, cholesterol and phospholipid. In contrast, spontaneous formation of the expected colloids was demonstrated for the freeze-dried lipid mixtures. Pellets prepared by compression of freeze-dried powders released PE-FITC-OVA slower than those prepared from physically mixed powders. TEM investigations revealed that the antigen was released in the form of colloidal particles (ISCOMs) from pellets prepared by compression of freeze-dried powders. The addition of excess cholesterol slowed down the release of antigen. The findings obtained in this study are important for the formulation of solid Quil A-containing lipid articles as controlled particulate adjuvant containing antigen delivery systems. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The structures of multilayer Langmuir-Blodgett films of barium arachidate before and after heat treatment have been investigated using both atomic force microscopy (AFM) and grazing incidence synchrotron X-ray diffraction (GIXD). AFM gave information on surface morphology at molecular resolution while GIXD provided quantitative details of the lattice structures of the films with their crystal symmetries and lattice constants. As-prepared films contained three coexisting structures: two triclinic structures with the molecularchains tilted by about 20degrees from the film normal and with 3 x 1 or 2 x 2 super-lattice features arising from height modulation of the molecules in the films; a rectangular structure with molecules perpendicular to the film surface. Of these, the 3 x 1 structure is dominant with a loose correlation between the bilayers. In the film plane both superstructures are commensurate with the local structures, having different oblique symmetries. The lattice constants for the 3 x 1 structure are a(s) = 3a = 13.86 Angstrom, b(s) = b = 4.31 Angstrom and gamma(s) = gamma = 82.7degrees; for the 2 x 2 structure a(s) = 2a = 16.54 Angstrom, b(s) = 2b = 9.67 Angstrom, gamma(s) = gamma = 88degrees. For the rectangular structure the lattice constants are a = 7.39 Angstrom, b = 4.96 Angstrom and gamma = 90degrees. After annealing, the 2 x 2 and rectangular structures were not observed, while the 3 x 1 structure had developed over the entire film. For the annealed films the correlation length in the film plane is about twice that in the unheated films, and in the out-of-plane direction covers two bilayers. The above lattice parameters, determined by GIXD, differed significantly from the values obtained by AFM, due possibly to distortion of the films by the scanning action of the AFM tip. (C) 2004 Published by Elsevier B.V.
Resumo:
Molecular dynamics simulations of the magainin MG-H2 peptide interacting with a model phospholipid membrane have been used to investigate the mechanism by which antimicrobial peptides act. Multiple copies of the peptide were randomly placed in solution close to the membrane. The peptide readily bound to the membrane, and above a certain concentration, the peptide was observed to cooperatively induce the formation of a nanometer- sized, toroidally shaped pore in the bilayer. In sharp contrast with the commonly accepted model of a toroidal pore, only one peptide was typically found near the center of the pore. The remaining peptides lay close to the edge of the pore, maintaining a predominantly parallel orientation with respect to the membrane.
Resumo:
Mechanosensitivity is a ubiquitous sensory mechanism found in living organisms. The simplest known mechanotransducing mechanism is found in bacteria in the form of the mechanosensitive membrane channel of large conductance, MscL. This channel has been studied extensively using a variety of methods at a functional and structural level. The channel is gated by membrane tension in the lipid bilayer alone. It serves as a safety valve protecting bacterial cells against hypoosmotic shock. MscL of Escherichia coli embedded in bilayers composed of asymmetric amounts of single-tailed and double-tailed lipids has been shown to gate spontaneously, even in the absence of membrane tension. To gain insight into the effect of the lipid membrane composition and geometry on MscL structure, a fully solvated, all-atom model of MscL in a stress-free curved bilayer composed of double- and single-tailed lipids was studied using a 9.5-ns molecular dynamics simulation. The bilayer was modeled as a domed structure accommodating the asymmetric composition of the monolayers. During the course of the simulation a spontaneous restructuring of the periplasmic loops occurred, leading to interactions between one of the loops and phospholipid headgroups. Previous experimental studies of the role of the loops agree with the observation that opening starts with a restructuring of the periplasmic loop, suggesting an effect of the curved bilayer. Because of limited resources, only one simulation of the large system was performed. However, the results obtained suggest that through the geometry and composition of the bilayer the protein structure can be affected even on short timescales.