27 resultados para LEARNING OBJECTS REPOSITORIES - MODELS
em University of Queensland eSpace - Australia
Resumo:
E. L. DeLosh, J. R. Busemeyer, and M. A. McDaniel (1997) found that when learning a positive, linear relationship between a continuous predictor (x) and a continuous criterion (y), trainees tend to underestimate y on items that ask the trainee to extrapolate. In 3 experiments, the authors examined the phenomenon and found that the tendency to underestimate y is reliable only in the so-called lower extrapolation region-that is, new values of x that lie between zero and the edge of the training region. Existing models of function learning, such as the extrapolation-association model (DeLosh et al., 1997) and the population of linear experts model (M. L. Kalish, S. Lewandowsky, & J. Kruschke, 2004), cannot account for these results. The authors show that with minor changes, both models can predict the correct pattern of results.
Resumo:
Except for a few large scale projects, language planners have tended to talk and argue among themselves rather than to see language policy development as an inherently political process. A comparison with a social policy example, taken from the United States, suggests that it is important to understand the problem and to develop solutions in the context of the political process, as this is where decisions will ultimately be made.
Resumo:
Control Engineering is an essential part of university electrical engineering education. Normally, a control course requires considerable mathematical as well as engineering knowledge and is consequently regarded as a difficult course by many undergraduate students. From the academic point of view, how to help the students to improve their learning of the control engineering knowledge is therefore an important task which requires careful planning and innovative teaching methods. Traditionally, the didactic teaching approach has been used to teach the students the concepts needed to solve control problems. This approach is commonly adopted in many mathematics intensive courses; however it generally lacks reflection from the students to improve their learning. This paper addresses the practice of action learning and context-based learning models in teaching university control courses. This context-based approach has been practised in teaching several control engineering courses in a university with promising results, particularly in view of student learning performances.
Resumo:
Three main models of parameter setting have been proposed: the Variational model proposed by Yang (2002; 2004), the Structured Acquisition model endorsed by Baker (2001; 2005), and the Very Early Parameter Setting (VEPS) model advanced by Wexler (1998). The VEPS model contends that parameters are set early. The Variational model supposes that children employ statistical learning mechanisms to decide among competing parameter values, so this model anticipates delays in parameter setting when critical input is sparse, and gradual setting of parameters. On the Structured Acquisition model, delays occur because parameters form a hierarchy, with higher-level parameters set before lower-level parameters. Assuming that children freely choose the initial value, children sometimes will miss-set parameters. However when that happens, the input is expected to trigger a precipitous rise in one parameter value and a corresponding decline in the other value. We will point to the kind of child language data that is needed in order to adjudicate among these competing models.
Resumo:
This special issue represents a further exploration of some issues raised at a symposium entitled “Functional magnetic resonance imaging: From methods to madness” presented during the 15th annual Theoretical and Experimental Neuropsychology (TENNET XV) meeting in Montreal, Canada in June, 2004. The special issue’s theme is methods and learning in functional magnetic resonance imaging (fMRI), and it comprises 6 articles (3 reviews and 3 empirical studies). The first (Amaro and Barker) provides a beginners guide to fMRI and the BOLD effect (perhaps an alternative title might have been “fMRI for dummies”). While fMRI is now commonplace, there are still researchers who have yet to employ it as an experimental method and need some basic questions answered before they venture into new territory. This article should serve them well. A key issue of interest at the symposium was how fMRI could be used to elucidate cerebral mechanisms responsible for new learning. The next 4 articles address this directly, with the first (Little and Thulborn) an overview of data from fMRI studies of category-learning, and the second from the same laboratory (Little, Shin, Siscol, and Thulborn) an empirical investigation of changes in brain activity occurring across different stages of learning. While a role for medial temporal lobe (MTL) structures in episodic memory encoding has been acknowledged for some time, the different experimental tasks and stimuli employed across neuroimaging studies have not surprisingly produced conflicting data in terms of the precise subregion(s) involved. The next paper (Parsons, Haut, Lemieux, Moran, and Leach) addresses this by examining effects of stimulus modality during verbal memory encoding. Typically, BOLD fMRI studies of learning are conducted over short time scales, however, the fourth paper in this series (Olson, Rao, Moore, Wang, Detre, and Aguirre) describes an empirical investigation of learning occurring over a longer than usual period, achieving this by employing a relatively novel technique called perfusion fMRI. This technique shows considerable promise for future studies. The final article in this special issue (de Zubicaray) represents a departure from the more familiar cognitive neuroscience applications of fMRI, instead describing how neuroimaging studies might be conducted to both inform and constrain information processing models of cognition.
Resumo:
This theoretical note describes an expansion of the behavioral prediction equation, in line with the greater complexity encountered in models of structured learning theory (R. B. Cattell, 1996a). This presents learning theory with a vector substitute for the simpler scalar quantities by which traditional Pavlovian-Skinnerian models have hitherto been represented. Structured learning can be demonstrated by vector changes across a range of intrapersonal psychological variables (ability, personality, motivation, and state constructs). Its use with motivational dynamic trait measures (R. B. Cattell, 1985) should reveal new theoretical possibilities for scientifically monitoring change processes (dynamic calculus model; R. B. Cattell, 1996b), such as encountered within psycho therapeutic settings (R. B. Cattell, 1987). The enhanced behavioral prediction equation suggests that static conceptualizations of personality structure such as the Big Five model are less than optimal.
Resumo:
Input-driven models provide an explicit and readily testable account of language learning. Although we share Ellis's view that the statistical structure of the linguistic environment is a crucial and, until recently, relatively neglected variable in language learning, we also recognize that the approach makes three assumptions about cognition and language learning that are not universally shared. The three assumptions concern (a) the language learner as an intuitive statistician, (b) the constraints on what constitute relevant surface cues, and (c) the redescription problem faced by any system that seeks to derive abstract grammatical relations from the frequency of co-occurring surface forms and functions. These are significant assumptions that must be established if input-driven models are to gain wider acceptance. We comment on these issues and briefly describe a distributed, instance-based approach that retains the key features of the input-driven account advocated by Ellis but that also addresses shortcomings of the current approaches.
Resumo:
Achieving more sustainable land and water use depends on high-quality information and its improved use. In other words, better linkages are needed between science and management. Since many stakeholders with different relationships to the natural resources are inevitably involved, we suggest that collaborative learning environments and improved information management are prerequisites for integrating science and management. Case studies that deal with resource management issues are presented that illustrate the creation of collaborative learning environments through systems analyses with communities, and an integration of scientific and experiential knowledge of components of the system. This new knowledge needs to be captured and made accessible through innovative information management systems designed collaboratively with users, in forms which fit the users' 'mental models' of how their systems work. A model for linking science and resource management more effectively is suggested. This model entails systems thinking in a collaborative learning environment, and processes to help convergence of views and value systems, and make scientists and different kinds of managers aware of their interdependence. Adaptive management provides a mechanism for applying and refining scientists' and managers' knowledge. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
This chapter outlines the relationships between a number of key factors that influence learning and memory, and illustrates them by reference to studies on the foraging behaviour of fish. Learning can lead to significant improvements in foraging performance in only a few exposures, and at least some fish species are capable of adjusting their foraging strategy as patterns of patch profitability change. There is also evidence that the memory window for prey varies between fish species, and that this may be a function of environmental predictability. Convergence between behavioural ecology and comparative psychology offers promise in terms of developing more mechanistically realistic foraging models and explaining apparently 'suboptimal' patterns of behaviour. Foraging decisions involve the interplay between several distinct systems of learning and memory, including those that relate to habitat, food patches, prey types, conspecifics and predators. Fish biologists, therefore, face an interesting challenge in developing integrated accounts of fish foraging that explain how cognitive sophistication can help individual animals to deal with the complexity of the ecological context.
Resumo:
The Virtual Learning Environment (VLE) is one of the fastest growing areas in educational technology research and development. In order to achieve learning effectiveness, ideal VLEs should be able to identify learning needs and customize solutions, with or without an instructor to supplement instruction. They are called Personalized VLEs (PVLEs). In order to achieve PVLEs success, comprehensive conceptual models corresponding to PVLEs are essential. Such conceptual modeling development is important because it facilitates early detection and correction of system development errors. Therefore, in order to capture the PVLEs knowledge explicitly, this paper focuses on the development of conceptual models for PVLEs, including models of knowledge primitives in terms of learner, curriculum, and situational models, models of VLEs in general pedagogical bases, and particularly, the definition of the ontology of PVLEs on the constructivist pedagogical principle. Based on those comprehensive conceptual models, a prototyped multiagent-based PVLE has been implemented. A field experiment was conducted to investigate the learning achievements by comparing personalized and non-personalized systems. The result indicates that the PVLE we developed under our comprehensive ontology successfully provides significant learning achievements. These comprehensive models also provide a solid knowledge representation framework for PVLEs development practice, guiding the analysis, design, and development of PVLEs. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We present the results of applying automated machine learning techniques to the problem of matching different object catalogues in astrophysics. In this study, we take two partially matched catalogues where one of the two catalogues has a large positional uncertainty. The two catalogues we used here were taken from the H I Parkes All Sky Survey (HIPASS) and SuperCOSMOS optical survey. Previous work had matched 44 per cent (1887 objects) of HIPASS to the SuperCOSMOS catalogue. A supervised learning algorithm was then applied to construct a model of the matched portion of our catalogue. Validation of the model shows that we achieved a good classification performance (99.12 per cent correct). Applying this model to the unmatched portion of the catalogue found 1209 new matches. This increases the catalogue size from 1887 matched objects to 3096. The combination of these procedures yields a catalogue that is 72 per cent matched.
Resumo:
Three experiments are reported that examined the process by which trainees learn decision-making skills during a critical incident training program. Formal theories of category learning were used to identify two processes that may be responsible for the acquisition of decision-making skills: rule learning and exemplar learning. Experiments I and 2 used the process dissociation procedure (L. L. Jacoby, 1998) to evaluate the contribution of these processes to performance. The results suggest that trainees used a mixture of rule and exemplar learning. Furthermore, these learning processes were influenced by different aspects of training structure and design. The goal of Experiment 3 was to develop training techniques that enable trainees to use a rule adaptively. Trainees were tested on cases that represented exceptions to the rule. Unexpectedly, the results suggest that providing general instruction regarding the kinds of conditions in which a decision rule does not apply caused them to fixate on the specific conditions mentioned and impaired their ability to identify other conditions in which the rule might not apply. The theoretical, methodological, and practical implications of the results are discussed.