21 resultados para LAUNDRY DETERGENT
em University of Queensland eSpace - Australia
Resumo:
Whole body glucose homeostasis is dependent on the action of insulin. In muscle and adipose tissues, insulin stimulates glucose uptake by inducing the translocation of vesicles containing the glucose transporter GLUT4 to the cell surface. While the mechanisms of insulin-regulated GLUT4 translocation are not fully understood, some signaling intermediates have been implicated in this process. Interestingly, som: of these intermediates, including IRS-1 and PI3K, have been localised to the same intracellular membrane fraction as the GLUT4 storage pool, designated here as the high-speed pellet (HSP) fraction. This raises the possibility that many of the downstream insulin signaling intermediates may be located within close proximity to intracellular GLUT4. The goal of this study was to test this hypothesis in 3T3-L1 adipocytes. A large proportion of adipocyte phosphoproteins co-fractionated in the HSP fraction. In an attempt to resolve insulin-regulatable phosphoproteins, we subjected P-32-labeled subcellular fractions to two-dimensional gel electrophoresis (2-DE). Insulin reproducibly stimulated the phosphorylation of 12 spots in the HSP fraction. Most of the HSP phosphoproteins were insoluble in the nonionic detergent Triton X-100, whereas integral membrane proteins such as GLUT4 and intracellular caveolin were soluble under the same conditions. These results suggest that insulin-regulatable phosphoproteins in adipocytes may be organized in microdomains within the cell and that this assembly may act as an efficient conductor of the signaling proteins to rapidly facilitate downstream biological responses. Further study is required to establish the molecular basis for these detergent-insoluble signaling complexes.
Resumo:
The basic framework for the JAK/STAT pathway is well documented. Recruitment of latent cytoplasmic STAT transcription factors to tyrosine phosphorylated docking sites on cytokine receptors and their JAK-mediated phosphorylation instigates their translocation to the nucleus and their ability to bind DNA, The biochemical processes underlying recruitment and activation of this pathway have commonly been studied in reconstituted in vitro systems using previously defined recombinant signaling components. We have dissected the Interferon gamma (IFN gamma) signal transduction pathway in crude extracts from wild-type and STAT1-negative mutant cell Lines by real-time BIAcore analysis, size-exclusion (SE) chromatography and immune-detection. The data indicate that in detergent-free cell extracts: (1) the phospho-tyrosine (Y440P)-containing peptide motif of the IFN gamma-receptor ct-chain interacts directly with STAT1, or STAT1 complexes, and no other protein; (2) nonactivated STAT 1 is present in a higher molecular weight complex(es) and, at least for IFN gamma-primed cells, is available for recruitment to the activated IFN gamma-receptor from only a subset of such complexes; (3) activated STAT1 is released from the receptor as a monomer.
Resumo:
Deep-sea fish, defined as those living below 200 m, inhabit a most unusual photic environment, being exposed to two sources of visible radiation: very dim downwelling sunlight and bioluminescence, both of which are, in most cases. maximal at wavelengths around 450-500 nm. This paper summarises the reflective properties of the ocular tapeta often found in these animals the pigmentation of their lenses and the absorption characteristics of their visual pigments. Deepsea tapeta usually appear blue to the human observer. reflecting mainly shortwave radiation. However, reflection in other parts of the spectrum is not uncommon and uneven tapetal distribution across the retina is widespread. Perhaps surprisingly, given the fact that they live in a photon limited environment, the lenses of some deep-sea teleosts are bright yellow, absorbing much of the shortwave part of the spectrum. Such lenses contain a variety of biochemically distinct pigments which most likely serve to enhance the visibility of bioluminescent signals. Of the 195 different visual pigments characterised by either detergent extract or microspectrophotometry in the retinae of deep-sea fishes, cn. 87% have peak absorbances within the range 468-494 nm. Modelling shows that this is most likely an adaptation for the detection of bioluminescence. Around 13% of deep-sea fish have retinae containing more than one visual pigment. Of these, we highlight three genera of stomiid dragonfishes, which uniquely produce far red bioluminescence from suborbital photophores. Using a combination of longwave-shifted visual pigments and in one species (Malacosteus niger) a chlorophyll-related photosensitizer. these fish have evolved extreme red sensitivity enabling them to see their own bioluminescence and giving them a private spectral waveband invisible to other inhabitants of the deep-ocean. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A biotin group was covalently attached to the C terminus of gramicidin A (gA) through a linker arm comprising a glycine residue with either one (gAXB) or two caproyl groups (gAXXB). High-resolution two-dimensional NMR spectroscopy was used to determine the structure of these modified gA analogues and [Lys(16)]gramicidin A (gA-Lys) in sodium dodecyl-d(25) sulphate micelles. Gated gA ion channels based on linking a receptor group to these gA analogues have been used recently as a component in a sensing device. The conformations of the gA backbones and amino acid side chains of lysinated gA and biotinylated gA in detergent micelles were found to be almost identical to that of native gA, i.e. that of an N-terminal to N-terminal (head to head) dimer formed by two right-handed, single-stranded beta(6.3) helices. The biotin tail of the gAXB and gAXXB and the lysine extremity of gA-Lys appeared to lie outside the micelle. Thus it appears that the covalent attachment of functional groups to the C terminus of gA does not disrupt the peptide's helical configuration. Further, single channel measurements of all three gA analogues showed that functioning ion channels were preserved within a membrane environment. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Two in sacco experiments were conducted to evaluate the impact on the nutritive value of rhodes grass hay (Chloris gayana cv. Callide) of treatment with alkalis or oxidants. In Experiment 1, three alkalis (Ca(OH)(2), NaOH, CaO) and two oxidants (NaOCl and H2O2) were applied at levels of 0, 20, 40, 60 or 80 g/kg of dry matter (DM). NaOH, Ca(OH)(2) and CaO had negative linear effects (P < 0.05) on the neutral detergent fibre (NDF) content and positive linear effects (P < 0.05) on the 48 h in sacco disappearances of DM, organic matter (OM), NDF and acid detergent fibre (ADF). NaOCl reduced (P < 0.05) NDF content but had no effect (P > 0.05) on the in sacco disappearances. H2O2 had no effect (P > 0.05) on the composition or digestibility of rhodes grass hay. In Experiment 2, effects of urea (0, 20, 40, 60 and 80 g urea/kg DM) and water (250, 500 and 750 g/kg DM) treatment of rhodes grass hay were examined in a 5 x 3 factorial experiment. Significant interactions between water and urea (P < 0.05) occurred for concentrations of crude protein (CP) and NDF, and 48 h in sacco disappearances of DM, OM (OMD) and NDE The combinations of water (g/kg DM) and urea (g/kg DM) that resulted in the highest concentrations of CP (281 g/kg DM) and OMD (747 g/kg DM) were 250 + 80 and 500 + 80, respectively. NaOH, Ca(OH)(2), CaO and urea significantly alter the NDF content and digestibility of rhodes grass hay, and urea also increases its CP content. Overall, NaOH was the most efficacious, followed by Ca(OH)(2), CaO, urea, NaOCl and H2O2. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The artificial chaperone method for protein refolding developed by Rozema et al. (Rozema, D.; Gellman, S. H. J. Am. Chem. Soc. 1995, 117 (8), 2373-2374) involves the sequential dilution of denatured protein into a buffer containing detergent (cetyltrimethylammonium bromide, CTAB) and then into a refolding buffer containing cyclodextrin WD). In this paper a simplified one-step artificial chaperone method is reported, whereby CTAB is added directly to the denatured solution, which is then diluted directly into a refolding buffer containing P-cyclodextrin (P-CD). This new method can be applied at high protein concentrations, resulting in smaller processing volumes and a more concentrated protein solution following refolding. The increase in achievable protein concentration results from the enhanced solubility of CTAB at elevated temperatures in concentrated denaturant. The refolding yields obtained for the new method were significantly higher than for control experiments lacking additives and were comparable to the yields obtained with the classical two-step approach. A study of the effect of beta-CD and CTAB concentrations on refolding yield suggested two operational regimes: slow stripping ( beta-CDXTABsimilar to1), most suited for higher protein concentrations, and fast stripping (beta-CD/CTABsimilar to2.7), best suited for lower protein concentrations. An increased chaotrope concentration resulted in higher refolding yields and an enlarged operational regime.
Resumo:
Schistosoma mansoni masks its surface with adsorbed host proteins including erythrocyte antigens, immunoglobulins, major histocompatibility complex class I, and beta (2)-microglobulin (beta (2)m), presumably as a means of avoiding host immune responses, How this is accomplished has not been explained. To identify surface receptors for host proteins, we biotinylated the tegument of live S, mansoni adults and mechanically transformed schistosomula and then removed the parasite surface with detergent, Incubation of biotinylated schistosome surface extracts witt l human immunoglobulin G (IgG) Fc-Sepharose resulted in purification of a 97-kDa protein that was subsequently identified as paramyosin (Pmy), using antiserum specific for recombinant Pmy, Fc also bound recombinant S. mansoni Pmy and native S. japonicum Pmy, Antiserum to Pmy decreased the binding of Pmy to Fc-Sepharose, and no proteins bound after removal of Pmy from extracts. Fluoresceinated human Fe bound to the surface, vestigial penetration glands, and nascent oral cavity of mechanically transformed schistosomula, and rabbit anti-Pmy Fab fragments ablated the binding of Fc to the schistosome surface, Pmy coprecipitated with host IgG from parasite surface extracts, indicating that complexes formed on the parasite surface as well as in vitro. Binding of Pmy to Fe was not inhibited by soluble protein A, suggesting that Pmy does not bind to the region between the CH2 and CH3 domains used by many other Fc-binding proteins. beta (2)m did not bind to the schistosome Fc receptor (Pmy), a finding that contradicts reports from earlier workers but did bind to a heteromultimer of labeled schistosomula surface proteins, This is the first report of the molecular identity of a schistosome Fc receptor; moreover it demonstrates an additional aspect of the unusual and multifunctional properties of Pmy from schistosomes and other parasitic flatworms.
Resumo:
Flotillin-1 was recently shown to be enriched on detergent-resistant domains of the plasma membrane called lipid rafts. These rafts, enriched in sphingolipids and cholesterol, sequester certain proteins while excluding others. Lipid rafts have been implicated in numerous cellular processes including signal transduction, membrane trafficking and molecular sorting. In this study, we demonstrate both morphologically and biochemically that lipid rafts are present on phagosomes, These structures are enriched in flotillin-1 and devoid of the main phagosomes membrane protein lysosomal-associated membrane protein (LAMP1), The flotillin-1 present on phagosomes does not originate from the plasma membrane during phagocytosis but accumulates gradually on maturing phagosomes, Treatment with bafilomycin A1, a compound that inhibits the proton pump ATPase and prevents the fusion of phagosomes with late endocytic organelles, prevents the acquisition of flotillin-1 by phagosomes, indicating that this protein might be recruited on phagosomes from endosomal organelles. A proteomic characterization of the lipid rafts of phagosomes indicates that actin, the alpha- and beta -subunits of heterotrimeric G proteins, as well as subunits of the proton pump V-ATPase are among the constituents of these domains. Remarkably, the intracellular parasite Leishmania donovani can actively inhibit the acquisition of flotillin-1-enriched lipid rafts by phagosomes and the maturation of these organelles. These results indicate that specialized functions required for phagolysosome biogenesis may occur at focal points on the phagosome membrane, and therefore represent a potential target of intracellular pathogens.
Resumo:
zFour rumen-fistulated, multiparous Holstein-Friesian cows in early lactation were offered mixed diets based on rhodes grass hay (Chloris gayana) cv. Callide containing 13, 14, 15 or 16% crude protein (CP) on a dry matter basis, in a 4 x 4 latin square design. The estimated undegradable protein concentration in these diets was similar with rumen degradable protein concentration varying. Cows fed a diet containing 13% CP had lower (P = 0.07) milk yields than cows in other treatments (20.4 vs 21.9, 22.0 and 22.2 L/d for 13, 14, 15 and 16% CP, respectively). A positive linear relationship was found (P = 0.06) between organic matter intake and dietary CP%. There were negative linear relationships between dietary CP% and digestibilities of dry matter (P = 0.09), organic matter (P = 0.06) and neutral detergent fibre (P = 0.02). Feeding a diet containing 13% CP resulted in significantly lower (P = 0.001) molar proportions (%) of rumen valerate in comparison with other treatments. The molar proportions of isovalerate differed (P = 0.001) between treatments (0.66, 0.78, 0.89 and 1.04%) for 13, 14, 15 and 16% CP, respectively). Dietary protein level had no effect on rates of passage, in situ digestion of rhodes grass hay or ratios of allantoin: creatinine in urine. These data showed that increasing the dietary CP concentration of lactating cows fed diets based on rhodes grass hay increased intakes and not significantly improved at dietary CP concentrations above 14% DM.
Resumo:
Endocytosis of cell-surface proteins via specific pathways is critical for their function. We show that multiple glycosylphosphatidylinositol-anchored proteins (GPI-APs) are endocytosed to the recycling endosomal compartment but not to the Golgi via a nonclathrin, noncaveolae mediated pathway. GPI anchoring is a positive signal for internalization into rab5-independent tubular-vesicular endosomes also responsible for a major fraction of fluid-phase uptake; molecules merely lacking cytoplasmic extensions are not included. Unlike the internalization of detergent-resistant membrane (DRM)-associated interleukin 2 receptor, endocytosis of DRM-associated GPI-APs is unaffected by inhibition of RhoA or dynamin 2 activity. Inhibition of Rho family GTPase cdc42, but not Rac1, reduces fluid-phase uptake and redistributes GPI-APs to the clathrin-mediated pathway. These results describe a distinct constitutive pinocytic pathway, specifically regulated by cdc42.
Resumo:
Background: In the presence of dNTPs, intact HIV-1 virions are capable of reverse transcribing at least part of their genome, a process known as natural endogenous reverse transcription (NERT). PCR analysis of virion DNA produced by NERT revealed that the first strand transfer reaction (1stST) was inefficient in intact virions, with minus strand (-) strong stop DNA (ssDNA) copy numbers up to 200 times higher than post-1stST products measured using primers in U3 and U5. This was in marked contrast to the efficiency of 1stST observed in single-round cell infection assays, in which (-) ssDNA and U3-U5 copy numbers were indistinguishable. Objectives: To investigate the reasons for the discrepancy in first strand transfer efficiency between intact cell-free virus and the infection process. Study design: Alterations of both NERT reactions and the conditions of cell infection were used to test whether uncoating and/or entry play a role in the discrepancy in first strand transfer efficiency. Results and Conclusions: The difference in 1stST efficiency could not be attributed simply to viral uncoating, since addition of very low concentrations of detergent to NERT reactions removed the viral envelope without disrupting the reverse transcription complex, and these conditions resulted in no improvement in 1stST efficiency. Virus pseudotyped with surface glycoproteins from either vesicular stomatitis virus or amphotrophic murine leukaemia virus also showed low levels of 1stST in low detergent NERT assays and equivalent levels of (-) ssDNA and 1stST in single-round infections of cells, demonstrating that the gp120-mediated infection process did not select for virions capable of carrying out 1stST. These data indicate that a post-entry event or factor may be involved in efficient HIV-1 reverse transcription in vivo. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Hookworms feed on blood, but the mechanism by which they lyse ingested erythrocytes is unknown. Here we show that Ancylostoma caninum, the common dog hookworm, expresses a detergent soluble, haemolytic factor. Activity was identified in both adult and larval stages, was heat-stable and unaffected by the addition of protease inhibitors, metal ions, chelators and reducing agents. Trypsin ablated lysis indicating that the haemolysin is a protein. A closely migrating doublet of hookworm proteins with apparent molecular weights of 60-65 kDa bound to the erythrocyte membrane after lysis of cells using both unlabeled and biotinylated detergent-solubilised hookworm extracts. In addition, separation of detergent-soluble parasite extracts using strong cation-exchange chromatography, resulted in purification of 60-65 kDa proteins with trypsin-sensitive haemolytic activity. Erythrocytes lysed with particulate, buffer-insoluble worm extracts were observed using scanning electron microscopy and appeared as red cell ghosts with approximately 100 nm diameter pores formed in the cell membranes. Red blood cell ghosts remained visible indicating that lysis was likely caused by pore formation and followed by osmotic disruption of the cell. (C) 2004 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The intestinal spirochaete Brachyspira pilosicoli causes colitis in a wide variety of host species. Little is known about the structure or protein constituents of the B. pilosicoli outer membrane (OM). To identify surface-exposed proteins in this species, membrane vesicles were isolated from B. pilosicoli strain 95-1000 cells by osmotic lysis in dH(2)O followed by isopycnic centrifugation in sucrose density gradients. The membrane vesicles were separated into a high-density fraction (HDMV; p = 1.18 g CM-3) and a low-density fraction (LDMV; rho=1.12 g cm(-3)). Both fractions were free of flagella and soluble protein contamination. LDMV contained predominantly OM markers (lipo-oligosaccharide and a 29 kDa B. pilosicoli OM protein) and was used as a source of antigens to produce mAbs. Five B. pilosicoli-specific mAbs reacting with proteins with molecular masses of 23, 24, 35, 61 and 79 kDa were characterized. The 23 kDa protein was only partially soluble in Triton X-114, whereas the 24 and 35 kDa proteins were enriched in the detergent phase, implying that they were integral membrane proteins or lipoproteins. All three proteins were localized to the B. pilosicoli OM by immunogold labelling using specific mAbs. The gene encoding the abundant, surface-exposed 23 kDa protein was identified by screening a B. pilosicoli 95-1000 genome library with the mAb and was expressed in Escherichia coli. Sequence analysis showed that it encoded a unique lipoprotein, designated BmpC. Recombinant BmpC partitioned predominantly in the OM fraction of E. coli strain SOLR. The mAb to BmpC was used to screen a collection of 13 genetically heterogeneous strains of B. pilosicoli isolated from five different host species. Interestingly, only strain 95-1000 was reactive with the mAb, indicating that either the surface-exposed epitope on BmpC is variable between strains or that the protein is restricted in its distribution within B. pilosicoli.
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.