6 resultados para Knowledge Discovery

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Leximancer system is a relatively new method for transforming lexical co-occurrence information from natural language into semantic patterns in an unsupervised manner. It employs two stages of co-occurrence information extraction-semantic and relational-using a different algorithm for each stage. The algorithms used are statistical, but they employ nonlinear dynamics and machine learning. This article is an attempt to validate the output of Leximancer, using a set of evaluation criteria taken from content analysis that are appropriate for knowledge discovery tasks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pattern discovery in a long temporal event sequence is of great importance in many application domains. Most of the previous work focuses on identifying positive associations among time stamped event types. In this paper, we introduce the problem of defining and discovering negative associations that, as positive rules, may also serve as a source of knowledge discovery. In general, an event-oriented pattern is a pattern that associates with a selected type of event, called a target event. As a counter-part of previous research, we identify patterns that have a negative relationship with the target events. A set of criteria is defined to evaluate the interestingness of patterns associated with such negative relationships. In the process of counting the frequency of a pattern, we propose a new approach, called unique minimal occurrence, which guarantees that the Apriori property holds for all patterns in a long sequence. Based on the interestingness measures, algorithms are proposed to discover potentially interesting patterns for this negative rule problem. Finally, the experiment is made for a real application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents load profiles of electricity customers, using the knowledge discovery in databases (KDD) procedure, a data mining technique, to determine the load profiles for different types of customers. In this paper, the current load profiling methods are compared using data mining techniques, by analysing and evaluating these classification techniques. The objective of this study is to determine the best load profiling methods and data mining techniques to classify, detect and predict non-technical losses in the distribution sector, due to faulty metering and billing errors, as well as to gather knowledge on customer behaviour and preferences so as to gain a competitive advantage in the deregulated market. This paper focuses mainly on the comparative analysis of the classification techniques selected; a forthcoming paper will focus on the detection and prediction methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While others have attempted to determine, by way of mathematical formulae, optimal resource duplication strategies for random walk protocols, this paper is concerned with studying the emergent effects of dynamic resource propagation and replication. In particular, we show, via modelling and experimentation, that under any given decay (purge) rate the number of nodes that have knowledge of particular resource converges to a fixed point or a limit cycle. We also show that even for high rates of decay - that is, when few nodes have knowledge of a particular resource - the number of hops required to find that resource is small.