11 resultados para Kimberlite alteration

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in gene expression are associated with switching to an autoprotected phenotype in response to environmental and physiological stress. Ubiquitous molecular chaperones from the heat shock protein (HSP) superfamily confer neuronal protection that can be blocked by antibodies. Recent research has focused on the interactions between the molecular sensors that affect the increased expression of neuroprotective HSPs above constitutive levels. An examination of the conditions under which the expression of heat shock protein 70 (Hsp70) was up regulated in a hypoxia and anoxia tolerant tropical species, the epaulette shark (Hemiscyllium ocellatum), revealed that up-regulation was dependent on exceeding a stimulus threshold for an oxidative stressor. While hypoxic-preconditioning confers neuroprotective changes, there was no increase in the level of Hsp70 indicating that its increased expression was not associated with achieving a neuroprotected state in response to hypoxia in the epaulette shark. Conversely, there was a significant increase in Hsp70 in response to anoxic-preconditioning, highlighting the presence of a stimulus threshold barrier and raising the possibility that, in this species, Hsp70 contributes to the neuroprotective response to extreme crises, such as oxidative stress. Interestingly, there was a synergistic effect of coincident stressors on Hsp70 expression, which was revealed when metabolic stress was superimposed upon oxidative stress. Brain energy charge was significantly lower when adenosine receptor blockade, provided by treatment with aminophylline, was present prior to the final anoxic episode, under these circumstances, the level of Hsp70 induced was significantly higher than in the pair-matched saline treated controls. An understanding of the molecular and metabolic basis for neuroprotective switches, which result in an up-regulation of neuroprotective Hsp70 expression in the brain, is needed so that intervention strategies can be devised to manage CNS pathologies and minimise damage caused by ischemia and trauma. In addition, the current findings indicate that measurements of HSP expression per se may provide a useful correlate of the level of neuroprotection achieved in the switch to an autoprotected phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abundant illite precipitation, in Proterozoic rocks from Northern Lawn Hill Platform, Mt Isa Basin, Australia, occurred in organic matter-rich black shales rather than in sandstones, siltstones and organic matter-poor shales. Sandstones and siltstones acted as impermeable rocks, as early diagenetic quartz and carbonate minerals reduced the porosity-permeability. Scanning and transmission electron microscopy (SEM and TEM) studies indicate a relation between creation of microporosity-permeability and organic matter alteration, suitable for subsequent mineral precipitation. K-Ar data indicate that organic matter alteration and the subsequent illite precipitation within the organic matter occurred during the regional hydrothermal event at 1172 +/- 150 (2sigma) Ma. Hot circulating fluids are considered to be responsible for organic matter alteration, migration and removal of volatile hydrocarbon, and consequently porosity-permeability creation. Those rocks lacking sufficient porosity-permeability, such as sandstones, siltstones and organic matter poor shales, may not have been affected by fluid movement. In hydrothermal systems, shales and mudstones may not be impermeable as usually assumed because of hydrocarbons being rapidly removed by fluid, even with relatively low total organic carbon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.