5 resultados para Key Agreement Protocol
em University of Queensland eSpace - Australia
Resumo:
We realize an end-to-end no-switching quantum key distribution protocol using continuous-wave coherent light. We encode weak broadband Gaussian modulations onto the amplitude and phase quadratures of light beams. Our no-switching protocol achieves high secret key rate via a post-selection protocol that utilizes both quadrature information simultaneously. We establish a secret key rate of 25 Mbits/s for a lossless channel and 1 kbit/s for 90% channel loss, per 17 MHz of detected bandwidth, assuming individual Gaussian eavesdropping attacks. Since our scheme is truly broadband, it can potentially deliver orders of magnitude higher key rates by extending the encoding bandwidth with higher-end telecommunication technology.
Resumo:
Achievement of steady state during indirect calorimetry measurements of resting energy expenditure (REE) is necessary to reduce error and ensure accuracy in the measurement. Steady state is often defined as 5 consecutive min (5-min SS) during which oxygen consumption and carbon dioxide production vary by +/-10%. These criteria, however, are stringent and often difficult to satisfy. This study aimed to assess whether reducing the time period for steady state (4-min SS or 3-min SS) produced measurements of REE that were significantly different from 5-min SS. REE was measured with the use of open-circuit indirect calorimetry in 39 subjects, of whom only 21 (54%) met the 5-min SS criteria. In these 21 subjects, median biases in REE between 5-min SS and 4-min SS and between 5-min SS and 3-min SS were 0.1 and 0.01%, respectively. For individuals, 4-min SS measured REE within a clinically acceptable range of +/-2% of 5-min SS, whereas 3-min SS measured REE within a range of -2-3% of 5-min SS. Harris-Benedict prediction equations estimated REE for individuals within +/-20-30% of 5-min SS. Reducing the time period of steady state to 4 min produced measurements of REE for individuals that were within clinically acceptable, predetermined limits. The limits of agreement for 3-min SS fell outside the predefined limits of +/-2%; however, both 4-min SS and 3-min SS criteria greatly increased the proportion of subjects who satisfied steady state within smaller limits than would be achieved if relying on prediction equations.
Resumo:
We propose a new coherent state quantum key distribution protocol that eliminates the need to randomly switch between measurement bases. This protocol provides significantly higher secret key rates with increased bandwidths than previous schemes that only make single quadrature measurements. It also offers the further advantage of simplicity compared to all previous protocols which, to date, have relied on switching.
Resumo:
Objectives: The aim of this study was to assess the consistency and performance of radiologists interpreting breast magnetic resonance imaging (MRI) examinations. Materials and Methods: Two test sets of eight cases comprising cancers, benign disease, technical problems and parenchymal enhancement were prepared from two manufacturers' equipment (X and Y) and reported by 15 radiologists using the recording form and scoring system of the UK MRI breast screening study [(MAgnetic Resonance Imaging in Breast Screening (MARIBS)]. Variations in assessments of morphology, kinetic scores and diagnosis were measured by assessing intraobserver and interobserver variability and agreement. The sensitivity and specificity of reporting performances was determined using receiver operating characteristic (ROC) curve analysis. Results: Intraobserver variation was seen in 13 (27.7%) of 47 of the radiologists' conclusions (four technical and seven pathological differences). Substantial interobserver variation was observed in the scores recorded for morphology, pattern of enhancement, quantification of enhancement and washout pattern. The overall sensitivity of breast MRI was high [88.6%, 95% confidence interval (CI) 77.4-94.7%], combined with a specificity of 69.2% (95% CI 60.5-76.7%). The sensitivities were similar for the two test sets (P=.3), but the specificity was significantly higher for the Manufacturer X dataset (P
Resumo:
The random switching of measurement bases is commonly assumed to be a necessary step of quantum key distribution protocols. In this paper we present a no-switching protocol and show that switching is not required for coherent-state continuous-variable quantum key distribution. Further, this protocol achieves higher information rates and a simpler experimental setup compared to previous protocols that rely on switching. We propose an optimal eavesdropping attack against this protocol, assuming individual Gaussian attacks. Finally, we investigate and compare the no-switching protocol applied to the original Bennett-Brassard 1984 scheme.