5 resultados para Kangas, Ilka

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new model for Archaean granitoid magmatism is presented which reconciles the most important geochemical similarities and differences between tonalite-trondhjemite-granodiorite (TTG) and potassic granitoids. Trace element abundances reveal a strong arc magmatism signature in all studied granitoids from Barberton Mountain Land. Characteristic features include HFSE depletion as well as distinct enrichment peaks of fluid-sensitive trace elements such as Pb in N-MORB normalisation, clearly indicating that all studied granitoids are derived from refertilised mantle above subduction zones. We envisage hydrous basaltic (s.l.) melts as parental liquids, which underwent extensive fractional crystallisation. Distinctive residual cumulates evolved depending on initial water content. High-H2O melts crystallised garnet/amphibole together with pyroxenes and minor plagioclase, but no olivine. This fractionation path ultimately led to TTG-like melts. Less hydrous basaltic melts also crystallised garnet/amphibole, but the lower compatible element content indicates that olivine was also a liquidus phase. Pronounced negative Eu-anomalies of the granitic melts, correlating with Na, Ca and Al, indicate plagioclase to be of major importance. In the context of our model, the post-Archaean disappearance of TTG and concomitant preponderance of granites (s.l.), therefore, is explained with secular decrease of aqueous fluid transport into subduction zones and/or efficiency of deep fluid release from slabs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mangrove forest structure and sediment characteristics were examined in the extensive mangroves of Bocas del Toro, Republic of Panama. Forest structure was characterized to determine if spatial vegetation patterns were repeated over the Bocas del Toro landscape. Using a series of permanent plots and transects we found that the forests of Bocas del Toro were dominated by Rhizophora maugle with very few individuals of Avicennia germinans and Laguncularia racemosa. Despite this low species diversity, there was large variation in forest structure and in edaphic conditions (salinity, concentration of available phosphorus, Eh and sulphide concentration). Aboveground biomass varied 20-fold, from 6.8 Mg ha(-1) in dwarf forests to 194.3 Mg ha(-1) in the forests fringing the land. But variation in forest structure was predictable across the intertidal zone. There was a strong tree height gradient from seaward fringe (mean tree height 3.9 m), decreasing in stature in the interior dwarf forests (mean tree height 0.7 m), and increasing in stature in forests adjacent to the terrestrial forest (mean tree height 4.1 m). The predictable variation in forest structure emerges due to the complex interactions among edaphic and plant factors. Identifying predictable patterns in forest structure will aid in scaling up the ecosystem services provided by mangrove forests in coastal landscapes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: PI-88 is a mixture of highly sulfated oligosaccharides that inhibits heparanase, an extracellular matrix endoglycosidase, and the binding of angiogenic growth factors to heparan sulfate. This agent showed potent inhibition of placental blood vessel angiogenesis as well as growth inhibition in multiple xenograft models, thus forming the basis for this study. Experimental Design: This study evaluated the toxicity and pharmacokinetics of PI-88 (80-315 mg) when administered s.c. daily for 4 consecutive days bimonthly (part 1) or weekly (part 2). Results: Forty-two patients [median age, 53 years (range, 19-78 years); median performance status, 1] with a range of advanced solid tumors received a total of 232 courses. The maximum tolerated dose was 250 mg/d. Dose-limiting toxicity consisted of thrombocytopenia and pulmonary embolism. Other toxicity was generally mild and included prolongation of the activated partial thromboplastin time and injection site echymosis. The pharmacokinetics were linear with dose. Intrapatient variability was low and interpatient variability was moderate. Both AUC and C-max correlated with the percent increase in activated partial thromboplastin time, showing that this pharmacodynamic end point can be used as a surrogate for drug exposure, No association between PI-88 administration and vascular endothelial growth factor or basic fibroblast growth factor levels was observed. One patient with melanoma had a partial response, which was maintained for >50 months, and 9 patients had stable disease for >= 6 months. Conclusion: The recommended dose of PI-88 administered for 4 consecutive days bimonthly or weekly is 250 mg/d. PI-88 was generally well tolerated. Evidence of efficacy in melanoma supports further evaluation of PI-88 in phase II trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatial gradients in mangrove tree height in barrier islands of Belize are associated with nutrient deficiency and sustained flooding in the absence of a salinity gradient. While nutrient deficiency is likely to affect many parameters, here we show that addition of phosphorus (P) to dwarf mangroves stimulated increases in diameters of xylem vessels, area of conductive xylem tissue and leaf area index (LAI) of the canopy. These changes in structure were consistent with related changes in function, as addition of P also increased hydraulic conductivity (K-s), stomatal conductance and photosynthetic assimilation rates to the same levels measured in taller trees fringing the seaward margin of the mangrove. Increased xylem vessel size and corresponding enhancements in stern hydraulic conductivity in P fertilized dwarf trees came at the cost of enhanced midday loss of hydraulic conductivity and was associated with decreased assimilation rates in the afternoon. Analysis of trait plasticity identifies hydraulic properties of trees as more plastic than those of leaf structural and physiological characteristics, implying that hydraulic properties are key in controlling growth in mangroves. Alleviation of P deficiency, which released trees from hydraulic limitations, reduced the structural and functional distinctions between dwarf and taller fringing tree forms of Rhizophora mangle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Root respiration uses a significant proportion of photosynthetically fixed carbon (C) and is a globally important source of C liberated from soils. Mangroves, which are an important and productive forest resource in many tropical and subtropical countries, sustain a high ratio of root to shoot biomass which may indicate that root respiration is a particularly important component in mangrove forest carbon budgets. Mangroves are often exposed to nutrient pollution from coastal waters. Here we assessed the magnitude of fine root respiration in mangrove forests in Belize and investigated how root respiration is influenced by nutrient additions. Respiration rates of excised fine roots of the mangrove, Rhizophora mangle L., were low (4.01 +/- 0.16 nmol CO2 g(-1) s(-1)) compared to those measured in temperate tree species at similar temperatures. In an experiment where trees where fertilized with nitrogen (N) or phosphorus (P) in low productivity dwarf forests (1-2 m height) and more productive, taller (47 m height) seaward fringing forests, respiration of fine roots did not vary consistently with fertilization treatments or with forest stature. Fine roots of taller fringe trees had higher concentrations of both N and P compared to dwarf trees. Fertilization with P enhanced fine root P concentrations in both dwarf and fringe trees, but reduced root N concentrations compared to controls. Fertilization with N had no effect on root N or P concentrations. Unlike photosynthetic C gain and growth, which is strongly limited by P availability in dwarf forests at this site, fine root respiration (expressed on a mass basis) was variable, but showed no significant enhancements with nutrient additions. Variation in fine root production and standing biomass are, therefore, likely to be more important factors determining C efflux from mangrove sediments than variations in fine root respiration per unit mass.