73 resultados para Kac-Moody algebras

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by application of twisted current algebra in description of the entropy of Ads(3) black hole, we investigate the simplest twisted current algebra sl(3, c)(k)((2)). Free field representation of the twisted algebra, and the corresponding twisted Sugawara energy-momentum tensor are obtained by using three (beta, gamma) pairs and two scalar fields. Primary fields and two screening currents of the first kind are presented. (C) 2001 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free field and twisted parafermionic representations of twisted su(3)(k)((2)) current algebra are obtained. The corresponding twisted Sugawara energy-momentum tensor is given in terms of three (beta, gamma) pairs and two scalar fields and also in terms of twisted parafermionic currents and one scalar field. Two screening currents of the first kind are presented in terms of the free fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new parafermionic algebra associated with the homogeneous space A(2)((2))/U(1) and its corresponding Z-algebra have been recently proposed. In this paper, we give a free boson representation of the A(2)((2)) parafermion algebra in terms of seven free fields. Free field realizations of the parafermionic energy-momentum tensor and screening currents are also obtained. A new algebraic structure is discovered, which contains a W-algebra type primary field with spin two. (C) 2002 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Representations of the non-semisimple superalgebra gl(2/2) in the standard basis are investigated by means of the vector coherent state method and boson-fermion realization. All finite-dimensional irreducible typical and atypical representations and lowest weight (indecomposable) Kac modules of gl(2/2) are constructed explicity through the explicit construction of all gl(2) circle plus gl(2) particle states (multiplets) in terms of boson and fermion creation operators in the super-Fock space. This gives a unified and complete treatment of finite-dimensional representations of gl(2/2) in explicit form, essential for the construction of primary fields of the corresponding current superalgebra at arbitrary level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure constants of quantum Lie algebras depend on a quantum deformation parameter q and they reduce to the classical structure constants of a Lie algebra at q = 1. We explain the relationship between the structure constants of quantum Lie algebras and quantum Clebsch-Gordan coefficients for adjoint x adjoint --> adjoint We present a practical method for the determination of these quantum Clebsch-Gordan coefficients and are thus able to give explicit expressions for the structure constants of the quantum Lie algebras associated to the classical Lie algebras B-l, C-l and D-l. In the quantum case the structure constants of the Cartan subalgebra are non-zero and we observe that they are determined in terms of the simple quantum roots. We introduce an invariant Killing form on the quantum Lie algebras and find that it takes values which are simple q-deformations of the classical ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the results of spin ladder models associated with the Lie algebras su(2(n)) to the case of the orthogonal and symplectic algebras o(2(n)), sp(2(n)) where n is the number of legs for the system. Two classes of models are found whose symmetry, either orthogonal or symplectic, has an explicit n dependence. Integrability of these models is shown for an arbitrary coupling of XX-type rung interactions and applied magnetic field term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum Lie algebras are generalizations of Lie algebras which have the quantum parameter h built into their structure. They have been defined concretely as certain submodules L-h(g) of the quantized enveloping algebras U-h(g). On them the quantum Lie product is given by the quantum adjoint action. Here we define for any finite-dimensional simple complex Lie algebra g an abstract quantum Lie algebra g(h) independent of any concrete realization. Its h-dependent structure constants are given in terms of inverse quantum Clebsch-Gordan coefficients. We then show that all concrete quantum Lie algebras L-h(g) are isomorphic to an abstract quantum Lie algebra g(h). In this way we prove two important properties of quantum Lie algebras: 1) all quantum Lie algebras L-h(g) associated to the same g are isomorphic, 2) the quantum Lie product of any Ch(B) is q-antisymmetric. We also describe a construction of L-h(g) which establishes their existence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present two integrable spin ladder models which possess a general free parameter besides the rung coupling J. The models are exactly solvable by means of the Bethe ansatz method and we present the Bethe ansatz equations. We analyze the elementary excitations of the models which reveal the existence of a gap for both models that depends on the free parameter. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of biperfect (noncocommutative) weak Hopf algebras is introduced and their properties are discussed. A new type of quasi-bicrossed products is constructed by means of weak Hopf skew-pairs of the weak Hopf algebras which are generalizations of the Hopf pairs introduced by Takeuchi. As a special case, the quantum double of a finite dimensional biperfect (noncocommutative) weak Hopf algebra is built. Examples of quantum doubles from a Clifford monoid as well as a noncommutative and noncocommutative weak Hopf algebra are given, generalizing quantum doubles from a group and a noncommutative and noncocommutative Hopf algebra, respectively. Moreover, some characterizations of quantum doubles of finite dimensional biperfect weak Hopf algebras are obtained. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Braided m-Lie algebras induced by multiplication are introduced, which generalize Lie algebras, Lie color algebras and quantum Lie algebras. The necessary and sufficient conditions for the braided m-Lie algebras to be strict Jacobi braided Lie algebras are given. Two classes of braided m-Lie algebras are given, which are generalized matrix braided m-Lie algebras and braided m-Lie subalgebras of End(F)M, where M is a Yetter-Drinfeld module over B with dimB < infinity. In particular, generalized classical braided m-Lie algebras sl(q,f)(GM(G)(A),F) and osp(q,l)(GM(G)(A),M,F) of generalized matrix algebra GMG(A) are constructed and their connection with special generalized matrix Lie superalgebra sl(s,f)(GM(Z2)(A(s)),F) and orthosymplectic generalized matrix Lie super algebra osp(s,l) (GM(Z2)(A(s)),M-s,F) are established. The relationship between representations of braided m-Lie algebras and their associated algebras are established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A class of algebras forms a variety if it is characterised by a collection of identities. There is a well-known method, often called the standard construction, which gives rise to algebras from m-cycle systems. It is known that the algebras arising from {1}-perfect m-cycle systems form a variety for m is an element of {3, 5} only, and that the algebras arising from {1, 2}-perfect m-cycle systems form a variety for m is an element of {3, 5, 7} only. Here we give, for any set K of positive integers, necessary and sufficient conditions under which the algebras arising from K-perfect m-cycle systems form a variety. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The minimal irreducible representations of U-q[gl(m|n)], i.e. those irreducible representations that are also irreducible under U-q[osp(m|n)] are investigated and shown to be affinizable to give irreducible representations of the twisted quantum affine superalgebra U-q[gl(m|n)((2))]. The U-q[osp(m|n)] invariant R-matrices corresponding to the tensor product of any two minimal representations are constructed, thus extending our twisted tensor product graph method to the supersymmetric case. These give new solutions to the spectral-dependent graded Yang-Baxter equation arising from U-q[gl(m|n)((2))], which exhibit novel features not previously seen in the untwisted or non-super cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gaudin models based on the face-type elliptic quantum groups and the XYZ Gaudin models are studied. The Gaudin model Hamiltonians are constructed and are diagonalized by using the algebraic Bethe ansatz method. The corresponding face-type Knizhnik–Zamolodchikov equations and their solutions are given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we investigate several important aspects of the structure theory of the recently introduced quasi-Hopf superalgebras (QHSAs), which play a fundamental role in knot theory and integrable systems. In particular we introduce the opposite structure and prove in detail (for the graded case) Drinfeld's result that the coproduct Delta ' =_ (S circle times S) (.) T (.) Delta (.) S-1 induced on a QHSA is obtained from the coproduct Delta by twisting. The corresponding "Drinfeld twist" F-D is explicitly constructed, as well as its inverse, and we investigate the complete QHSA associated with Delta '. We give a universal proof that the coassociator Phi ' = (S circle times S circle times S) Phi (321) and canonical elements alpha ' = S(beta), beta ' = S(alpha) correspond to twisting, the original coassociator Phi = Phi (123) and canonical elements alpha, beta with the Drinfeld twist F-D. Moreover in the quasi-tri angular case, it is shown algebraically that the R-matrix R ' = (S circle times S)R corresponds to twisting the original R-matrix R with F-D. This has important consequences in knot theory, which will be investigated elsewhere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the-energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunnelling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunnelling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics; Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions.; In applying all the above models to. physical situations, the need for an exact analysis of small-scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.