57 resultados para K method
em University of Queensland eSpace - Australia
Resumo:
A comprehensive study has been conducted to compare the adsorptions of alkali metals (including Li, Na, and K) on the basal plane of graphite by using molecular orbital theory calculations. All three metal atoms prefer to be adsorbed on the middle hollow site above a hexagonal aromatic ring. A novel phenomenon was observed, that is, Na, instead of Li or K, is the weakest among the three types of metal atoms in adsorption. The reason is that the SOMO (single occupied molecular orbital) of the Na atom is exactly at the middle point between the HOMO and the LUMO of the graphite layer in energy level. As a result, the SOMO of Na cannot form a stable interaction with either the HOMO or the LUMO of the graphite. On the other hand, the SOMO of Li and K can form a relatively stable interaction with either the HOMO or the LUMO of graphite. Why Li has a relatively stronger adsorption than K on graphite has also been interpreted on the basis of their molecular-orbital energy levels.
Resumo:
We present an analysis of the free vibration of plates with internal discontinuities due to central cut-outs. A numerical formulation for a basic L-shaped element which is divided into appropriate sub-domains that are dependent upon the location of the cut-out is used as the basic building element. Trial functions formed to satisfy certain boundary conditions are employed to define the transverse deflection of each sub-domain. Mathematical treatments in terms of the continuities in displacement, slope, moment, and higher derivatives between the adjacent sub-domains are enforced at the interconnecting edges. The energy functional results, from the proper assembly of the coupled strain and kinetic energy contributions of each sub-domain, are minimized via the Ritz procedure to extract the vibration frequencies and. mode shapes of the plates. The procedures are demonstrated by considering plates with central cut-outs that are subjected to two types of boundary conditions. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Multicellular tumor spheroids (MCTS) are used as organotypic models of normal and solid tumor tissue. Traditional techniques for generating MCTS, such as growth on nonadherent surfaces, in suspension, or on scaffolds, have a number of drawbacks, including the need for manual selection to achieve a homogeneous population and the use of nonphysiological matrix compounds. In this study we describe a mild method for the generation of MCTS, in which individual spheroids form in hanging drops suspended from a microtiter plate. The method has been successfully applied to a broad range of cell lines and shows nearly 100% efficiency (i.e., one spheroid per drop). Using the hepatoma cell line, HepG2, the hanging drop method generated well-rounded MCTS with a narrow size distribution (coefficient of variation [CV] 10% to 15%, compared with 40% to 60% for growth on nonadherent surfaces). Structural analysis of HepG2 and a mammary gland adenocarcinoma cell line, MCF-7, composed spheroids, revealed highly organized, three-dimensional, tissue-like structures with an extensive extracellular matrix. The hanging drop method represents an attractive alternative for MCTS production, because it is mild, can be applied to a wide variety of cell lines, and can produce spheroids of a homogeneous size without the need for sieving or manual selection. The method has applications for basic studies of physiology and metabolism, tumor biology, toxicology, cellular organization, and the development of bioartificial tissue. (C) 2003 Wiley Periodicals, Inc.
Resumo:
A magnesium alloy of eutectic composition (33 wt-'%Al) was directionally solidified in mild steel tubes at two growth rates, 32 and 580 mum s(-1,) in a temperature gradient between 10 and 20 K mm(-1). After directional solidification, the composition of each specimen varied dramatically, from 32'%Al in the region that had remained solid to 18%Al (32 mum s(-1) specimen) and 13%Al (580 mum s(-1) specimen) at the plane that had been quenched from the eutectic temperature. As the aluminium content decreased, the microstructure contained an increasing volume fraction of primary magnesium dendrites and the eutectic morphology gradually changed from lamellar to partially divorced. The reduction in aluminium content was caused by the growth of an Al-Fe phase ahead of the Mg-Al growth front. Most of the growth of the Al-Fe phase occurred during the remelting period before directional solidification. The thickness of the Al-Fe phase increased with increased temperature and time of contact with the molten Mg-Al alloy. (C) 2003 Maney Publishing.
Resumo:
Objective: Expectancies about the outcomes of alcohol consumption are widely accepted as important determinants of drinking. This construct is increasingly recognized as a significant element of psychological interventions for alcohol-related problems. Much effort has been invested in producing reliable and valid instruments to measure this construct for research and clinical purposes, but very few have had their factor structure subjected to adequate validation. Among them, the Drinking Expectancies Questionnaire (DEQ) was developed to address some theoretical and design issues with earlier expectancy scales. Exploratory factor analyses, in addition to validity and reliability analyses, were performed when the original questionnaire was developed. The object of this study was to undertake a confirmatory analysis of the factor structure of the DEQ. Method: Confirmatory factor analysis through LISREL 8 was performed using a randomly split sample of 679 drinkers. Results: Results suggested that a new 5-factor model, which differs slightly from the original 6-factor version, was a more robust measure of expectancies. A new method of scoring the DEQ consistent with this factor structure is presented. Conclusions: The present study shows more robust psychometric properties of the DEQ using the new factor structure.
Resumo:
Blood sampling is an essential technique in many herpetological studies. This paper describes a quick and humane technique to collect blood samples from three species of Australian chelid turtles ( Order Pleurodira): Chelodina expansa, Elseya latisternum, and Emydura macquarii signata.
Resumo:
A new method is presented here for the systematic design of biplanar shielded shim and gradient coils, for use in magnetic resonance imaging (MRI) and other applications. The desired target field interior to the coil is specified in advance, and a winding pattern is then designed to produce a field that matches the target as closely as possible. Both gradient and shim coils can be designed by this approach, and the target region can be located asymmetrically within the coil. The interior target field may be matched at two or more interior locations, to improve accuracy. When shields are present, the winding patterns are designed so that the fields exterior to the biplanar coil are made as small as possible. The method is illustrated here by the design of some transverse gradient and shim coils.
Resumo:
Computer-aided tomography has been used for many years to provide significant information about the internal properties of an object, particularly in the medical fraternity. By reconstructing one-dimensional (ID) X-ray images, 2D cross-sections and 3D renders can provide a wealth of information about an object's internal structure. An extension of the methodology is reported here to enable the characterization of a model agglomerate structure. It is demonstrated that methods based on X-ray microtomography offer considerable potential in the validation and utilization of distinct element method simulations also examined.
Resumo:
Objectives: Cyclosporin is an immunosuppressant drug with a narrow therapeutic window. Trough and 2-h post-dose blood samples are currently used for therapeutic drug monitoring in solid organ transplant recipients. The aim of the current study was to develop a rapid HPLC-tandem mass spectrometry (HPLC-MS) method for the measurement of cyclosporin in whole blood that was not only suitable for the clinical setting but also considered a reference method. Methods: Blood samples (50 mu L) were prepared by protein precipitation followed by C-18 solid-phase extraction while using d(12) cyclosporin as the internal standard. Mass spectrometric detection was by selected reaction monitoring with an electrospray interface in positive ionization mode. Results: The assay was linear from 10 to 2000 mu g/L (r(2) > 0.996, n = 9). Inter-day,analytical recovery and imprecision using whole blood quality control samples at 10, 30, 400, 1500, and 2000 mu g/L were 94.9-103.5% and
Resumo:
In this paper we apply a new method for the determination of surface area of carbonaceous materials, using the local surface excess isotherms obtained from the Grand Canonical Monte Carlo simulation and a concept of area distribution in terms of energy well-depth of solid–fluid interaction. The range of this well-depth considered in our GCMC simulation is from 10 to 100 K, which is wide enough to cover all carbon surfaces that we dealt with (for comparison, the well-depth for perfect graphite surface is about 58 K). Having the set of local surface excess isotherms and the differential area distribution, the overall adsorption isotherm can be obtained in an integral form. Thus, given the experimental data of nitrogen or argon adsorption on a carbon material, the differential area distribution can be obtained from the inversion process, using the regularization method. The total surface area is then obtained as the area of this distribution. We test this approach with a number of data in the literature, and compare our GCMC-surface area with that obtained from the classical BET method. In general, we find that the difference between these two surface areas is about 10%, indicating the need to reliably determine the surface area with a very consistent method. We, therefore, suggest the approach of this paper as an alternative to the BET method because of the long-recognized unrealistic assumptions used in the BET theory. Beside the surface area obtained by this method, it also provides information about the differential area distribution versus the well-depth. This information could be used as a microscopic finger-print of the carbon surface. It is expected that samples prepared from different precursors and different activation conditions will have distinct finger-prints. We illustrate this with Cabot BP120, 280 and 460 samples, and the differential area distributions obtained from the adsorption of argon at 77 K and nitrogen also at 77 K have exactly the same patterns, suggesting the characteristics of this carbon.
Resumo:
During puberty, pregnancy, lactation and postlactation, breast tissue undergoes extensive remodelling and the disruption of these events can lead to cancer. In vitro studies of mammary tissue and its malignant transformation regularly employ mammary epithelial cells cultivated on matrigel or floating collagen rafts. In these cultures, mammary epithelial cells assemble into three-dimensional structures resembling in vivo acini. We present a novel technique for generating functional mammary constructs without the use of matrix substitutes.
Resumo:
Consider a network of unreliable links, modelling for example a communication network. Estimating the reliability of the network-expressed as the probability that certain nodes in the network are connected-is a computationally difficult task. In this paper we study how the Cross-Entropy method can be used to obtain more efficient network reliability estimation procedures. Three techniques of estimation are considered: Crude Monte Carlo and the more sophisticated Permutation Monte Carlo and Merge Process. We show that the Cross-Entropy method yields a speed-up over all three techniques.
Resumo:
Subsequent to the influential paper of [Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B., 1992. An empirical comparison of alternative models of the short-term interest rate. Journal of Finance 47, 1209-1227], the generalised method of moments (GMM) has been a popular technique for estimation and inference relating to continuous-time models of the short-term interest rate. GMM has been widely employed to estimate model parameters and to assess the goodness-of-fit of competing short-rate specifications. The current paper conducts a series of simulation experiments to document the bias and precision of GMM estimates of short-rate parameters, as well as the size and power of [Hansen, L.P., 1982. Large sample properties of generalised method of moments estimators. Econometrica 50, 1029-1054], J-test of over-identifying restrictions. While the J-test appears to have appropriate size and good power in sample sizes commonly encountered in the short-rate literature, GMM estimates of the speed of mean reversion are shown to be severely biased. Consequently, it is dangerous to draw strong conclusions about the strength of mean reversion using GMM. In contrast, the parameter capturing the levels effect, which is important in differentiating between competing short-rate specifications, is estimated with little bias. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Detection of point mutations or single nucleotide polymorphisms (SNPs) is important in relation to disease susceptibility or detection in pathogens of mutations determining drug resistance or host range. There is an emergent need for rapid detection methods amenable to point-of-care applications. The purpose of this study was to reduce to practice a novel method for SNP detection and to demonstrate that this technology can be used downstream of nucleic acid amplification. The authors used a model system to develop an oligonucleotide-based SNP detection system on nitrocellulose lateral flow strips. To optimize the assay they used cloned sequences of the herpes simplex virus-1 (HSV-1) DNA polymerase gene into which they introduced a point mutation. The assay system uses chimeric polymerase chain reaction (PCR) primers that incorporate hexameric repeat tags ("hexapet tags"). The chimeric sequences allow capture of amplified products to predefined positions on a lateral flow strip. These "hexapet" sequences have minimal cross-reactivity and allow specific hybridization-based capture of the PCR products at room temperature onto lateral flow strips that have been striped with complementary hexapet tags. The allele-specific amplification was carried out with both mutant and wild-type primer sets present in the PCR mix ("competitive" format). The resulting PCR products carried a hexapet tag that corresponded with either a wild-type or mutant sequence. The lateral flow strips are dropped into the PCR reaction tube, and mutant sequence and wild-type sequences diffuse along the strip and are captured at the corresponding position on the strip. A red line indicative of a positive reaction is visible after 1 minute. Unlike other systems that require separate reactions and strips for each target sequence, this system allows multiplex PCR reactions and multiplex detection on a single strip or other suitable substrates. Unambiguous visual discrimination of a point mutation under room temperature hybridization conditions was achieved with this model system in 10 minutes after PCR. The authors have developed a capture-based hybridization method for the detection and discrimination of HSV-1 DNA polymerase genes that contain a single nucleotide change. It has been demonstrated that the hexapet oligonucleotides can be adapted for hybridization on the lateral flow strip platform for discrimination of SNPs. This is the first step in demonstrating SNP detection on lateral flow using the hexapet oligonucleotide capture system. It is anticipated that this novel system can be widely used in point-of-care settings.
Resumo:
The existence of undesirable electricity price spikes in a competitive electricity market requires an efficient auction mechanism. However, many of the existing auction mechanism have difficulties in suppressing such unreasonable price spikes effectively. A new auction mechanism is proposed to suppress effectively unreasonable price spikes in a competitive electricity market. It optimally combines system marginal price auction and pay as bid auction mechanisms. A threshold value is determined to activate the switching between the marginal price auction and the proposed composite auction. Basically when the system marginal price is higher than the threshold value, the composite auction for high price electricity market is activated. The winning electricity sellers will sell their electricity at the system marginal price or their own bid prices, depending on their rights of being paid at the system marginal price and their offers' impact on suppressing undesirable price spikes. Such economic stimuli discourage sellers from practising economic and physical withholdings. Multiple price caps are proposed to regulate strong market power. We also compare other auction mechanisms to highlight the characteristics of the proposed one. Numerical simulation using the proposed auction mechanism is given to illustrate the procedure of this new auction mechanism.