4 resultados para Jamming Cancellation
em University of Queensland eSpace - Australia
Simulating quantum interference in a three-level system with perpendicular transition dipole moments
Resumo:
We consider a three-level V-type atomic system with the ground state coupled by a laser field to only one of the excited states, and with the two excited states coupled together by a dc field. Although the dipole moments of the two dipole-allowed transitions are assumed perpendicular, we demonstrate that this system emulates to a large degree a three-level system with parallel dipole moments-the latter being a system that exhibits quantum interference and displays a number of interesting features. As examples, we show that the system can produce extremely large values for the intensity-intensity correlation function, and that its resonance fluorescence spectrum can display ultranarrow lines. The dressed states for this system are identified, and the spectral features are interpreted in terms of transitions among these dressed states. We also show that this system is capable of exhibiting considerable squeezing.
Resumo:
Thixotropy is the characteristic of a fluid to form a gelled structure over time when it is not subjected to shearing, and to liquefy when agitated. Thixotropic fluids are commonly used in the construction industry (e.g., liquid concrete and drilling fluids), and related applications include some forms of mud flows and debris flows. This paper describes a basic study of dam break wave with thixotropic fluid. Theoretical considerations were developed based upon a kinematic wave approximation of the Saint-Venant equations down a prismatic sloping channel. A very simple thixotropic model, which predicts the basic theological trends of such fluids, was used. It describes the instantaneous state of fluid structure by a single parameter. The analytical solution of the basic flow motion and theology equations predicts three basic flow regimes depending upon the fluid properties and flow conditions, including the initial degree of jamming of the fluid (related to its time of restructuration at rest). These findings were successfully compared with systematic bentonite suspension experiments. The present work is the first theoretical analysis combining the basic principles of unsteady flow motion with a thixotropic fluid model and systematic laboratory experiments.
Resumo:
A blind nonlinear interference cancellation receiver for code-division multiple-access- (CDMA-) based communication systems operating over Rayleigh flat-fading channels is proposed. The receiver which assumes knowledge of the signature waveforms of all the users is implemented in an asynchronous CDMA environment. Unlike the conventional MMSE receiver, the proposed blind ICA multiuser detector is shown to be robust without training sequences and with only knowledge of the signature waveforms. It has achieved nearly the same performance of the conventional training-based MMSE receiver. Several comparisons and experiments are performed based on examining BER performance in AWGN and Rayleigh fading in order to verify the validity of the proposed blind ICA multiuser detector.