9 resultados para Itch ligase
em University of Queensland eSpace - Australia
Resumo:
The c-Jun N-terminal kinases (JNKs) are members of a larger group of serine/ threonine (Ser/Thr) protein kinases from the mitogen-activated protein kinase family. JNKs were originally identified as stress-activated protein kinases in the livers of cycloheximide-challenged rats. Their subsequent purification, cloning, and naming as JNKs have emphasized their ability to phosphorylate and activate the transcription factor c-Jun. Studies of c-Jun and related transcription factor substrates have provided clues about both the preferred substrate phosphorylation sequences and additional docking domains recognized by JNK There are now more than 50 proteins shown to be substrates for JNK These include a range of nuclear substrates, including transcription factors and nuclear hormone receptors, heterogeneous nuclear ribonucleoprotein K and the Pol I-specific transcription factor TIF-IA, which regulates ribosome synthesis. Many nonnuclear substrates have also been characterized, and these are involved in protein degradation (e.g., the E3 ligase Itch), signal transduction (e.g., adaptor and scaffold proteins and protein kinases), apoptotic cell death (e.g., mitochondrial Bcl2 family members), and cell movement (e.g., paxillin, DCX, microtubule-associated proteins, the stathmin family member SCG10, and the intermediate filament protein keratin 8). The range of JNK actions in the cell is therefore likely to be complex. Further characterization of the substrates of JNK should provide clearer explanations of the intracellular actions of the JNKs and may allow new avenues for targeting the JNK pathways with therapeutic agents downstream of JNK itself.
Resumo:
Zinc-finger-containing proteins can be classified into evolutionary and functionally divergent protein families that share one or more domains in which a zinc ion is tetrahedrally coordinated by cysteines and histidines. The zinc finger domain defines one of the largest protein superfamilies in mammalian genomes; 46 different conserved zinc finger domains are listed in InterPro (http://www.ebi.ac.uk/InterPro). Zinc finger proteins can bind to DNA, RNA, other proteins, or lipids as a modular domain in combination with other conserved structures. Owing to this combinatorial diversity, different members of zinc finger superfamilies contribute to many distinct cellular processes, including transcriptional regulation, mRNA stability and processing, and protein turnover. Accordingly, mutations of zinc finger genes lead to aberrations in a broad spectrum of biological processes such as development, differentiation, apoptosis, and immunological responses. This study provides the first comprehensive classification of zinc finger proteins in a mammalian transcriptome. Specific detailed analysis of the SP/Kruppel-like factors and the E3 ubiquitin-ligase RING-H2 families illustrates the importance of such an analysis for a more comprehensive functional classification of large protein families. We describe the characterization of a new family of C2H2 zinc-finger-containing proteins and a new conserved domain characteristic of this family, the identification and characterization of Sp8, a new member of the Sp family of transcriptional regulators, and the identification of five new RING-H2 proteins.
Resumo:
N4WBP5A (Ndfip2) belongs to an evolutionarily conserved group of Nedd4-interacting proteins with two homologues in mammalian species. We have previously shown that N4WBP5A expression in Xenopus oocytes results in increased cell-surface expression of the epithelial sodium channel. N4WBPs are characterized by one or two amino terminal PPxY motifs and three transmembrane domains. Here we show that both PPxY motifs of N4WBP5A mediate interaction with WW domains of Nedd4 and that N4WBP5A can physically interact with the WW domains of several Nedd4-family proteins. N4WBP5A is ubiquitinated and ubiquitination does not significantly affect the turnover of N4WBP5A protein. Ubiquitination of N4WBP5A is enhanced by Nedd4 and Nedd4-2 expression. N4WBP5A localizes to the Golgi, vesicles associated with the Golgi complex and to multivesicular bodies. We show that the ectopic expression of N4WBP5A inhibits receptor-mediated endocytosis of labelled epidermal growth factor. N4WBP5A overexpression inhibits accumulation of EGF in large endocytic/lysosomal vesicles suggestive of a role for N4WBP5A in protein trafficking. We propose that N4WBP5A acts as an adaptor to recruit Nedd4 family ubiquitin-protein ligases to the protein trafficking machinery.
Resumo:
Constitutive albumin uptake by the proximal tubule is achieved by a receptor-mediated process in which the Cl- channel, ClC-5, plays an obligate role. Here we investigated the functional interaction between ClC-5 and ubiquitin ligases Nedd4 and Nedd4-2 and their role in albumin uptake in opossum kidney proximal tubule (OK) cells. In vivo immunoprecipitation using an anti-HECT antibody demonstrated that ClC-5 bound to ubiquitin ligases, whereas glutathione S-transferase pull-downs confirmed that the C terminus of ClC-5 bound both Nedd4 and Nedd4-2. Nedd4-2 alone was able to alter ClC-5 currents in Xenopus oocytes by decreasing cell surface expression of ClC-5. In OK cells, a physiological concentration of albumin (10 mug/ml) rapidly increased cell surface expression of ClC-5, which was also accompanied by the ubiquitination of ClC-5. Albumin uptake was reduced by inhibiting either the lysosome or proteasome. Total levels of Nedd4-2 and proteasome activity also increased rapidly in response to albumin. Overexpression of ligase defective Nedd4-2 or knockdown of endogenous Nedd4-2 with small interfering RNA resulted in significant decreases in albumin uptake. In contrast, pathophysiological concentrations of albumin (100 and 1000 mug/ml) reduced the levels of ClC-5 and Nedd4-2 and the activity of the proteasome to the levels seen in the absence of albumin. These data demonstrate that normal constitutive uptake of albumin by the proximal tubule requires Nedd4-2, which may act via ubiquitination to shunt ClC-5 into the endocytic pathway.
Resumo:
CIC-5 is a chloride (Cl-) channel expressed in renal tubules and is critical for normal tubular function. Loss of function nonsense or missense mutations in CIC-5 are associated with Dent's disease, a condition in which patients present with low molecular weight (LMW) proteinuria (including albuminuria), hypercalciuria and nephrolithiasis. Several key studies in CIC-5 knockout mice have shown that the proteinuria results from defective tubular reabsorption of proteins. CIC-5 is typically regarded as an intracellular Cl- channel and thus the defect in this receptor-mediated uptake pathway was initially attributed to the failure of the early endosomes to acidify correctly. CIC-5 was postulated to play a key role in transporting the Cl- ions required to compensate for the movement of H+ during endosomal acidification. However, more recent studies suggest additional roles for CIC-5 in the endocytosis of albumin. CIC-5 is now known to be expressed at low levels at the cell surface and appears to be a key component in the assembly of the macromolecular complex involved in protein endocytosis. Furthermore, mutations in CIC-5 affect the trafficking of v-H+-ATPase and result in decreased expression of the albumin receptor megalin/cubulin. Thus, the expression of CIC-5 at the cell surface as well as its presence in endosomes appears to be essential for normal protein uptake by the renal proximal tubule. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Nucleic acid amplification tests (NAATs) for the detection of Neisseria gonorrhoeae became available in the early 1990s. Although offering several advantages over traditional detection methods, N. gonorrhoeae NAATs do have some limitations. These include cost, risk of carryover contamination, inhibition, and inability to provide antibiotic resistance data. In addition, there are sequence-related limitations that are unique to N. gonorrhoeae NAATs. In particular, false-positive results are a major consideration. These primarily stem from the frequent horizontal genetic exchange occurring within the Neisseria genus, leading to commensal Neisseria species acquiring N. gonorrhoeae genes. Furthermore, some N. gonorrhoeae subtypes may lack specific sequences targeted by a particular NAAT. Therefore, NAAT false-negative results because of sequence variation may occur in some gonococcal populations. Overall, the N. gonorrhoeae species continues to present a considerable challenge for molecular diagnostics. The need to evaluate N. gonorrhoeae NAATs before their use in any new patient population and to educate physicians on the limitations of these tests is emphasized in this review.
Resumo:
Pili (type IV fimbriae) of Neisseria meningitidis are glycosylated by the addition of O-linked sugars. Recent work has shown that PglF, a protein with homology to O-antigen 'flippases', is required for the biosynthesis of the pilin-linked glycan and suggests pilin glycosylation occurs in a manner analogous to the wzy-dependent addition of O-antigen to the core-LPS. O-Antigen ligases are crucial in this pathway for the transfer of undecraprenol-linked sugars to the LPS-core in Gram-negative bacteria. An O-antigen ligase homologue, pglL, was identified in N. meningitidis. PglL mutants showed no change in LPS phenotypes but did show loss of pilin glycosylation, confirming PglL is essential for pilin O-linked glycosylation in N. meningitidis. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Eczema is common, occurring in 15%-20% of infants and young children. For some infants it can be a severe chronic illness with a major impact on the child's general health and on the family. A minority of children will continue to have eczema as adults. The exact cause of eczema is not clear, but precipitating or aggravating factors may include food allergens (most commonly, egg) or environmental allergens/irritants, climatic conditions, stress. and genetic predisposition. Management of eczema consists of education; avoidance of triggers and allergens; liberal use of emollients or topical steroids to control inflammation; use of antihistamines to reduce itch; and treatment of infection if present. Treatment with systemic agents may be required in severe cases, but must be supervised by an immunologist. Urticaria (hives) may affect up to a quarter of people at some time in their lives. Acute urticaria is more common in children, while chronic urticaria is more common in adults. Chronic urticaria is not life-threatening, but the associated pruritus and unsightly weals can cause patients much distress and significantly affect their daily lives. Angioedema coexists with urticaria in about 50% of patients. It typically affects the lips, eyelids, palms, soles and genitalia. Management of urticaria is through education; avoidance of triggers and allergens (where relevant); use of antihistamines to reduce itch; and short-term use of corticosteroids when antihistamine therapy is ineffective. Referral is indicated for patients with resistant disease.
Resumo:
A number of proteins are activated by stress stimuli but none so spectacularly or with the degree of complexity as the tumour suppressor p53 (human p53 gene or protein). Once stabilized, p53 is responsible for the transcriptional activation of a series of proteins involved in cell cycle control, apoptosis and senescence. This protein is present at low levels in resting cells but after exposure to DNA-damaging agents and other stress stimuli it is stabilized and activated by a series of post-translational modifications that free it from MDM2 (mouse double minute 2 but used interchangeably to denote human also), a ubiquination ligase that ubiquitinates it prior to proteasome degradation. The stability of p53 is also influenced by a series of other interacting proteins. In this review, we discuss the post-translational modifications to p53 in response to different stresses and the consequences of these changes.