84 resultados para Isotherms of adsorption of CuX2
em University of Queensland eSpace - Australia
Resumo:
We present a new approach accounting for the nonadditivity of attractive parts of solid-fluid and fluidfluid potentials to improve the quality of the description of nitrogen and argon adsorption isotherms on graphitized carbon black in the framework of non-local density functional theory. We show that the strong solid-fluid interaction in the first monolayer decreases the fluid-fluid interaction, which prevents the twodimensional phase transition to occur. This results in smoother isotherm, which agrees much better with experimental data. In the region of multi-layer coverage the conventional non-local density functional theory and grand canonical Monte Carlo simulations are known to over-predict the amount adsorbed against experimental isotherms. Accounting for the non-additivity factor decreases the solid-fluid interaction with the increase of intermolecular interactions in the dense adsorbed fluid, preventing the over-prediction of loading in the region of multi-layer adsorption. Such an improvement of the non-local density functional theory allows us to describe experimental nitrogen and argon isotherms on carbon black quite accurately with mean error of 2.5 to 5.8% instead of 17 to 26% in the conventional technique. With this approach, the local isotherms of model pores can be derived, and consequently a more reliab * le pore size distribution can be obtained. We illustrate this by applying our theory against nitrogen and argon isotherms on a number of activated carbons. The fitting between our model and the data is much better than the conventional NLDFT, suggesting the more reliable PSD obtained with our approach.
Resumo:
In this paper we analyzed the adsorption of a large number of gases and vapors on graphitized thermal carbon black. The Henry constant was used to determine the adsorbate-adsorbent interaction energy, which is found to be a modest decreasing function of temperature. Analysis of the complete adsorption isotherm over a wider range of pressure yields information on the monolayer coverage concentration and the adsorbate-adsorbate interaction energy. Among the various equations tested, the Hill-de Boer equation accounting for BET-postulated multilayer formation describes well the adsorption isotherms of all adsorbates. On average, the adsorbate-adsorbate interaction energy in the adsorbed phase is less than that in the bulk phase, suggesting that the distance between adsorbed molecules in the first layer of the adsorbed phase is slightly less than the equilibrium distance between two adsorbate molecules in the bulk phase. This suggests that the first layer is in a compressed state, which is due to the attraction of the adsorbent surface. The monolayer concentration as determined from the fitting of the Hill-de Boer equation with experimental data is slightly larger than the values calculated from the molecular projection area, suggesting that molecules can be oriented such that a larger number of molecules can be accommodated on the carbon black surface. This further supports the shorter distance between adsorbate molecules in the adsorbed phase.
Resumo:
In this paper, we present the results of the prediction of the high-pressure adsorption equilibrium of supercritical. gases (Ar, N-2, CH4, and CO2) on various activated carbons (BPL, PCB, and Norit R1 extra) at various temperatures using a density-functional-theory-based finite wall thickness (FWT) model. Pore size distribution results of the carbons are taken from our recent previous work 1,2 using this approach for characterization. To validate the model, isotherms calculated from the density functional theory (DFT) approach are comprehensively verified against those determined by grand canonical Monte Carlo (GCMC) simulation, before the theoretical adsorption isotherms of these investigated carbons calculated by the model are compared with the experimental adsorption measurements of the carbons. We illustrate the accuracy and consistency of the FWT model for the prediction of adsorption isotherms of the all investigated gases. The pore network connectivity problem occurring in the examined carbons is also discussed, and on the basis of the success of the predictions assuming a similar pore size distribution for accessible and inaccessible regions, it is suggested that this is largely related to the disordered nature of the carbon.
Resumo:
Adsorption of argon and nitrogen at their respective boiling points in cylindrical pores of MCM-41 type silica-like adsorbents is studied by means of a non-local density functional theory (NLDFT), which is modified to deal with amorphous solids. By matching the theoretical results of the pore filling pressure versus pore diameter against the experimental data, we arrive at a conclusion that the adsorption branch (rather than desorption) corresponds to the true thermodynamic equilibrium. If this is accepted, we derive the optimal values for the solid–fluid molecular parameters for the system amorphous silica–Ar and amorphous silica–N2, and at the same time we could derive reliably the specific surface area of non-porous and mesoporous silica-like adsorbents, without a recourse to the BET method. This method is then logically extended to describe the local adsorption isotherms of argon and nitrogen in silica-like pores, which are then used as the bases (kernel) to determine the pore size distribution. We test this with a number of adsorption isotherms on the MCM-41 samples, and the results are quite realistic and in excellent agreement with the XRD results, justifying the approach adopted in this paper.
Resumo:
In this paper, we study the surface heterogeneity and the surface mediation on the intermolecular potential energy for nitrogen adsorption on graphitized thermal carbon black (GTCB). The surface heterogeneity is modeled as the random distribution of effective carbonyl functional groups on the graphite surface. The molecular parameters and the discrete charges of this carbonyl group are taken from Jorgensen, et al. (J. Am. Chem. Soc., (1984) 106, 6638) while those for nitrogen (dispersive parameters and discrete charges) are taken from Murthy et al. (Mol. Phys., (1983) 50, 531) in our Grand Canonical Monte Carlo (GCMC) simulation. The solid surface mediation in the reduction of intermolecular potential energy between two fluid molecules was taken from a recent work by Do et al. (Langmuir, (2004) 20, 7623). Our simulation results accounting for the surface heterogeneity and surface mediation on intermolecular potential energy were compared with the experimental data of nitrogen at 77 and 90 K. The solid-fluid dispersive parameters are determined from the Lorentz-Berthelot (LB) rule. The fraction of the graphite surface covered with carbonyl functional groups was then derived from the consideration of the Henry constant, and for the data of Kruk et al. (Langmuir, (1999) 15, 1435) we have found that 1% of their GTCB surface is covered with effective carbonyl functional groups. The damping constant, due to surface mediation, was determined from the consideration of the portion of the adsorption isotherm where the first layer is being completed, and it was found to take a value of 0.0075. With these parameters, we have found that the GCMC simulation results describe the data over the complete range of pressure substantially better than any other MC models in the literature. The implication of this work is demonstrated with local adsorption isotherms of 10 and 20 A slit pores. One was obtained without allowance for surface mediation, while the other correctly accounts for these factors. The two local isotherms differ substantially, and the implication is that if we used incorrect local isotherms (i.e. without the surface mediation) the pore size distribution would be incorrectly derived.
Resumo:
A Monte Carlo simulation method is Used 10 study the effects of adsorption strength and topology of sites on adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length. Argon is used as a model adsorbate, while the adsorbent is modeled as a finite carbon slit pore whose two walls composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. Impurities having well depth of interaction greater than that of carbon atom are assumed to be grafted onto the surface. Different topologies of the impurities; corner, centre, shelf and random topologies are studied. Adsorption isotherms of argon at 87.3 K are obtained for pore having widths of 1, 1.5 and 3 11111 using a Grand Canonical Monte Carlo simulation (GCMC). These results are compared with isotherms obtained for infinite pores. It is shown that the Surface heterogeneity affects significantly the overall adsorption isotherm, particularly the phase transition. Basically it shifts the onset of adsorption to lower pressure and the adsorption isotherms for these four impurity models are generally greater than that for finite pore. The positions of impurities on solid Surface also affect the shape of the adsorption isotherm and the phase transition. We have found that the impurities allocated at the centre of pore walls provide the greatest isotherm at low pressures. However when the pressure increases the impurities allocated along the edges of the graphene layers show the most significant effect on the adsorption isotherm. We have investigated the effect of surface heterogeneity on adsorption hysteresis loops of three models of impurity topology, it shows that the adsorption branches of these isotherms are different, while the desorption branches are quite close to each other. This suggests that the desorption branch is either the thermodynamic equilibrium branch or closer to it than the adsorption branch. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Adsorption isotherms of methane and carbon dioxide on two kinds of Australian coals have been measured at three temperatures up to pressures of 20 MPa. The adsorption behavior is described by three isotherm equations: extended three-parameter, Langmuir, and Toth. Among these, the Toth equation is found to be the most suitable, yielding the most realistic values of pore volume of the coals and the adsorbed phase density. Also, the surface area of coals obtained from CO2 adsorption at 273 K is found to be the meaningful parameter which captures the CO2 adsorption capacity. A maximum in the excess amount adsorbed of each gas appears at a lower pressure with a decrease in temperature. For carbon dioxide, after the appearance of the maximum, an inflection point in the excess amount adsorbed is observed close to the critical density at each temperature, indicating that the decrease in the gas-phase density change with pressure influences the behavior of the excess amount adsorbed. In the context of CO2 sequestration, it is found that CO2 injection pressures of lower than 10 MPa may be desirable for the CH4 recovery process and CO2-holding capacity.
Resumo:
A thermodynamic analysis of nitrogen adsorption in cylindrical pores of MCM-41 and SBA-15 samples at 77 K is presented within the framework of the Broekhoff and de Boer (BdB) theory. We accounted for the effect of the solid surface curvature on the potential exerted by the pore walls. The developed model is in quantitative agreement with the non-local density functional theory (NLDFT) for pores larger than 2 tun. This modified BdB theory accounting for the Curvature Dependent Potential (CDP-BdB) was applied to determine the pore size distribution (PSD) of a number of MCM-41 and SBA-15 samples on the basis of matching the equilibrium theoretical isotherm against the adsorption branch of the experimental isotherm. In all cases investigated the PSDs determined with the new approach are very similar to those determined with the non-local density functional theory also using the same basis of matching of theoretical isotherm against the experimental adsorption branch. The developed continuum theory is very simple in its utilization, suggesting that CDP-BdB could be used as an alternative tool to obtain PSD for mesoporous solids from the analysis of adsorption branch of adsorption isotherms of any sub-critical fluids.
Resumo:
This paper presents a thermodynamic analysis of capillary condensation phenomena in cylindrical pores. Here, we modified the Broekhoff and de Boer (BdB) model for cylindrical pores accounting for the effect of the pore radius on the potential exerted by the pore walls. The new approach incorporates the recently published standard nitrogen and argon adsorption isotherm on nonporous silica LiChrospher Si-1000. The developed model is tested against the nonlocal density functional theory (NLDFT), and the criterion for this comparison is the condensation/evaporation pressure versus the pore diameter. The quantitative agreement between the NLDFT and the refined version of the BdB theory is ascertained for pores larger than 2 nm. The modified BdB theory was applied to the experimental adsorption branch of adsorption isotherms of a number of MCM-41 samples to determine their pore size distributions (PSDs). It was found that the PSDs determined with the new BdB approach coincide with those determined with the NLDFT (also using the experimental adsorption branch). As opposed to the NLDFT, the modified BdB theory is very simple in its utilization and therefore can be used as a convenient tool to obtain PSDs of all mesoporous solids from the analysis of the adsorption branch of adsorption isotherms of any subcritical fluids.
Resumo:
Experimental laboratory methods have been developed that enable phase-equilibria studies to be carried out on slags in the system Ca-Cu-Fe-O in equilibrium with metallic copper. These techniques involve equilibration at temperature, rapid quenching, and chemical analysis of the phases using electron-probe X-ray microanalysis (EPNIA). Equilibration experiments have been carried out in the temperature range of 1150 degreesC to 1250 degreesC (1423 to 1523 K) and in the composition range of 4 to 80 wt pct "Cu2O," 0 to 25 wt pct CaO, and 20 to 75 wt pct "Fe2O3" in equilibrium with metallic copper. Liquidus and solidus data are reported for the primary-phase fields of spinel (magnetite) and dicalcium ferrite. The resulting data have been used to construct liquidus isotherms of the CaO-"Cu2O"-"Fe2O3" system at metallic copper saturation.
Resumo:
Adsorption of p-cresol, nitrobenzene and p-nitrophenol on treated and untreated carbons is investigated systematically. The effects of carbon surface chemistry and solution pH are studied and discussed. All adsorption experiments were carried out in pH-controlled solutions to examine the adsorption properties of the adsorption systems where the solutes are in molecular as well as ionic forms. Using the homogeneous Langmuir equation, the single solute parameters are determined. These parameters are then used to predict the binary solute adsorption isotherms and gain further insights into the adsorption process. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Adsorption of nitrogen, argon, methane, and carbon dioxide on activated carbon Norit R1 over a wide range of pressure (up to 50 MPa) at temperatures from 298 to 343 K (supercritical conditions) is analyzed by means of the density functional theory modified by incorporating the Bender equation of state, which describes the bulk phase properties with very high accuracy. It has allowed us to precisely describe the experimental data of carbon dioxide adsorption slightly above and below its critical temperatures. The pore size distribution (PSD) obtained with supercritical gases at ambient temperatures compares reasonably well with the PSD obtained with subcritical nitrogen at 77 K. Our approach does not require the skeletal density of activated carbon from helium adsorption measurements to calculate excess adsorption. Instead, this density is treated as a fitting parameter, and in all cases its values are found to fall into a very narrow range close to 2000 kg/m(3). It was shown that in the case of high-pressure adsorption of supercritical gases the PSD could be reliably obtained for the range of pore width between 0.6 and 3 run. All wider pores can be reliably characterized only in terms of surface area as their corresponding excess local isotherms are the same over a practical range of pressure.
Resumo:
The microstructure of a carbon molecular sieve membrane (CMSM) is characterized using adsorption equilibrium information. The pore size distributions of the CMSM derived from N-2 and CH4 adsorption isotherm are found to be consistent with each other and in agreement with the results of gas permeation experiments as well as the general characteristics of such molecular sieve materials. (C) 2003 Elsevier B.V. All rights reserved.