6 resultados para Isometric Axial Rotation

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the abdominal muscles in trunk rotation is not comprehensively understood. This study investigated the electromyographic (EMG) activity of anatomically distinct regions of the abdominal muscles during trunk rotation in six subjects with no history of spinal pain. Fine-wire electrodes were inserted into the right abdominal wall; upper region of transversus abdominis (TrA), middle region of TrA, obliquus internus abdominis (OI) and obliquus externus abdominis (OE), and lower region of TrA and OI. Surface electrodes were placed over right rectus abdominis (RA). Subjects performed trunk rotation to the left and right in sitting by rotating their pelvis relative to a fixed thorax. EMG activity was recorded in relaxed supine and sitting, and during an isometric hold at end range. TrA was consistently active during trunk rotation, with the recruitment patterns of the upper fascicles opposite to that of the middle and lower fascicles. During left rotation, there was greater activity of the lower and middle regions of contralateral TrA and the lower region of contralateral OI. The upper region of ipsilateral TrA and OE were predominately active during right rotation. In contrast, there was no difference in activity of RA and middle OI between directions (although middle OI was different between directions for all but one subject). This study indicates that TrA is active during trunk rotation, but this activity varies between muscle regions. These normative data will assist in understanding the role of TrA in lumbopelvic control and movement, and the effect of spinal pain on abdominal muscle recruitment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Study Design. Development of an automatic measurement algorithm and comparison with manual measurement methods. Objectives. To develop a new computer-based method for automatic measurement of vertebral rotation in idiopathic scoliosis from computed tomography images and to compare the automatic method with two manual measurement techniques. Summary of Background Data. Techniques have been developed for vertebral rotation measurement in idiopathic scoliosis using plain radiographs, computed tomography, or magnetic resonance images. All of these techniques require manual selection of landmark points and are therefore subject to interobserver and intraobserver error. Methods. We developed a new method for automatic measurement of vertebral rotation in idiopathic scoliosis using a symmetry ratio algorithm. The automatic method provided values comparable with Aaro and Ho's manual measurement methods for a set of 19 transverse computed tomography slices through apical vertebrae, and with Aaro's method for a set of 204 reformatted computed tomography images through vertebral endplates. Results. Confidence intervals (95%) for intraobserver and interobserver variability using manual methods were in the range 5.5 to 7.2. The mean (+/- SD) difference between automatic and manual rotation measurements for the 19 apical images was -0.5 degrees +/- 3.3 degrees for Aaro's method and 0.7 degrees +/- 3.4 degrees for Ho's method. The mean (+/- SD) difference between automatic and manual rotation measurements for the 204 endplate images was 0.25 degrees +/- 3.8 degrees. Conclusions. The symmetry ratio algorithm allows automatic measurement of vertebral rotation in idiopathic scoliosis without intraobserver or interobserver error due to landmark point selection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Study Design. A comparative study of trunk and hip extensor muscle recruitment patterns in 2 subject groups. Objective. To examine for changes in recruitment of the hip and back extensor muscles during low level isometric trunk rotation efforts in chronic low back pain (CLBP) subjects by comparison with matched asymptomatic control subjects. Summary of Background Data. Anatomic and biomechanical models have provided evidence that muscles attaching to the thoracolumbar fascia (TLF) are important for providing stabilization to the lumbopelvic region during trunk rotation. This has guided rehabilitation programs. The muscles that link diagonally to the posterior layer of the TLF have not previously been examined individually and compared during low-level trunk rotation efforts in CLBP patients and matched controls. Methods. Thirty CLBP patients and 30 matched controls were assessed using surface electromyography (EMG) as they performed low-level isometric rotation efforts while standing upright. Muscles studied included latissimus dorsi, erector spinae, upper and lower gluteus maximus, and biceps femoris. Subjects performed the rotation exertion with various levels of external trunk support, related to different functional tasks. Results. EMG results demonstrated that subjects with CLBP had significantly higher levels of recruitment for the lower and upper gluteus maximus (P < 0.05), hamstrings (P < 0.05), and erector spinae muscles (P < 0.05) during rotation to the left compared with the control subjects. Conclusion. This study provided evidence of increased muscle recruitment in CLBP patients when performing a standardized trunk rotation task. These results may have implications for the design of therapeutic exercise programs for CLBP patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Study Design. Quiet stance on supporting bases with different lengths and with different visual inputs were tested in 24 study participants with chronic low back pain (LBP) and 24 matched control subjects. Objectives. To evaluate postural adjustment strategies and visual dependence associated with LBP. Summary of Background Data. Various studies have identified balance impairments in patients with chronic LBP, with many possible causes suggested. Recent evidence indicates that study participants with LBP have impaired trunk muscle control, which may compromise the control of trunk and hip movement during postural adjustments ( e. g., hip strategy). As balance on a short base emphasizes the utilization of the hip strategy for balance control, we hypothesized that patients with LBP might have difficulties standing on short bases. Methods. Subjects stood on either flat surface or short base with different visual inputs. A task was counted as successful if balance was maintained for 70 seconds during bilateral stance and 30 seconds during unilateral stance. The number of successful tasks, horizontal shear force, and center-of-pressure motion were evaluated. Results. The hip strategy was reduced with increased visual dependence in study participants with LBP. The failure rate was more than 4 times that of the controls in the bilateral standing task on short base with eyes closed. Analysis of center-of-pressure motion also showed that they have inability to initiate and control a hip strategy. Conclusions. The inability to control a hip strategy indicates a deficit of postural control and is hypothesized to result from altered muscle control and proprioceptive impairment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, 3-D Lattice Solid Model (LSMearth or LSM) was extended by introducing particle-scale rotation. In the new model, for each 3-D particle, we introduce six degrees of freedom: Three for translational motion, and three for orientation. Six kinds of relative motions are permitted between two neighboring particles, and six interactions are transferred, i.e., radial, two shearing forces, twisting and two bending torques. By using quaternion algebra, relative rotation between two particles is decomposed into two sequence-independent rotations such that all interactions due to the relative motions between interactive rigid bodies can be uniquely decided. After incorporating this mechanism and introducing bond breaking under torsion and bending into the LSM, several tests on 2-D and 3-D rock failure under uni-axial compression are carried out. Compared with the simulations without the single particle rotational mechanism, the new simulation results match more closely experimental results of rock fracture and hence, are encouraging. Since more parameters are introduced, an approach for choosing the new parameters is presented.