2 resultados para Isoluminant

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compared the responsiveness of the LGN and the early retinotopic cortical areas to stimulation of the two cone-opponent systems (red - green and blue - yellow) and the achromatic system. This was done at two contrast levels to control for any effect of contrast. MR images were acquired on seven subjects with a 4T Bruker MedSpec scanner. The early visual cortical areas were localised by phase encoded retinotopic mapping with a volumetric analysis (Dumoulin et al, 2003 NeuroImage 18 576 - 587). We initially located the LGN in four subjects by using flickering stimuli in a separate scanning session, but subsequently identified it using the experimental stimuli. Experimental stimuli were sine-wave counterphasing rings (2 Hz, 0.5 cycle deg-1), cardinal for the selective activation of the L/M cone-opponent (RG), S cone-opponent (BY), and achromatic (Ach) systems. A region of interest analysis was performed. When presented at equivalent absolute contrasts (cone contrast = 5% - 6%), the BOLD response of the LGN is strongest to isoluminant red - green stimuli and weakest to blue - yellow stimuli, with the achromatic response falling in between. Area V1, on the other hand, responds best to both chromatic stimuli, with the achromatic response falling below. The key change from the LGN to V1 is a dramatic boost in the relative blue - yellow response, which occurred at both contrast levels used. This greatly enhanced cortical response to blue - yellow relative to the red - green and achromatic responses may be due to an increase in cell number and/or cell response between the LGN and V1. We speculate that the effect might reflect the operation of contrast constancy across colour mechanisms at the cortical level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moving borders defined by small luminance changes (or colour) can appear to jitter at a characteristic frequency when they are placed in close proximity to moving borders defined by large luminance changes (Arnold & Johnston, 2003). Using psychophysical techniques, we have now shown that illusory jitter can be generated when these different motion signals are shown selectively to either eye – implicating a cortical locus for illusory jitter generation. Using magneto-enceohalography (MEG) to record brain activity, we have also found that brain oscillations, of the same frequency as the illusory jitter rate, are enhanced when illusory jitter is experienced. This does not occur when observers are exposed to either isolated motion signals defined by small luminance changes (or colour) or to physical jitter of the same frequency as the illusory jitter. We believe therefore that the enhanced brain activity is related to illusory jitter generation rather than to jitter perception, or to isoluminant motion, per se. These observations support our hypothesis that this illusory jitter is generated in cortex by a dynamic feedback circuit. We believe that this circuit periodically corrects for a spatial conflict generated by proximate motion signals that differ in perceived speed.