4 resultados para Isocyanide

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absolute stereochemistry of amphilectene metabolites from Cribochalina sp. has been revised by a detailed NMR spectroscopic study of the Mosher ester derivatives of a related alcohol. The relative stereochemistry of the previously described amphilectenes has been reinvestigated and reassigned on the basis of the X-ray structural analysis carried out on one of them. The structure of a new amphilectene metabolite, which is an isothiocyanato analogue is also presented. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biosynthetic origins of the dichloroimine group in the stylotellanes A and B 1,2 have been investigated by incorporation of [C-14]-labeled farnesyl isocyanide 7 and farnesyl isothiocyanate 3 into the sponge Stylotella aurantium. (C) 2002 Elsevier Science Ltd. All rights reserled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biosynthetic origins of the isocyanide and isothiocyanate functional groups in the marine sponge metabolites diisocyanoadociane (1), 9-isocyanopupukeanane (10) and 9- isothiocyanatopupukeanane (11) are probed by the use of [C-14]-labelled precursor experiments. Incubation of the sponge Amphimedon terpenensis with [C-14]-labelled thiocyanate resulted in radioactive diisocyanoadociane ( 1) in which the radiolabel is specifically associated with the isocyanide carbons. As expected, cyanide and thiocyanate were confirmed as precursors to the pupukeananes 10 and 11 in the sponge Axinyssa n. sp.; additionally these precursors labelled 2-thiocyanatoneopupukeanane ( 12) in this sponge. To probe whether isocyanide-isothiocyanate interconversions take place at the secondary metabolite level, the advanced precursor bisisothiocyanate 17 was supplied to A. terpenensis, but did not result in significant labelling in the natural product isocyanide 1. In contrast, in the sponge Axinyssa n. sp., feeding of [C-14]-9-isocyanopupukeanane (10) resulted in isolation of radiolabelled 9- isothiocyanatopupukeanane 11, while the feeding of [C-14]-11 resulted in labelled isocyanide 10. These results show conclusively that isocyanides and isothiocyanates are interconverted in the sponge Axinyssa n. sp., and confirm the central role that thiocyanate occupies in the terpene metabolism of this sponge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biosynthetic origin of the dichloroimine functional group in the marine sponge terpene metabolites stylotellanes A ( 3) and B ( 4) was probed by the use of [C-14]-labelled precursor experiments. Incubation of the sponge Stylotella aurantium with [C-14]-labelled cyanide or thiocyanate resulted in radioactive terpenes in which the radiolabel was shown by hydrolytic chemical degradation to be associated specifically with the dichloroimine carbons. Additionally, label from both precursors was incorporated into farnesyl isothiocyanate ( 2). A time course experiment with [ 14C]cyanide revealed that the specific activity for farnesyl isothiocyanate decreases over time, but increases for stylotellane B ( 4), consistent with the rapid formation of farnesyl isothiocyanate ( 2) from inorganic precursors followed by a slower conversion to stylotellane B ( 4). The advanced precursors farnesyl isothiocyanate ( 2) and farnesyl isocyanide ( 5) were supplied to S. aurantium, and shown to be incorporated efficiently into stylotellane A ( 3) and B ( 4). Feeding of [C-14]-farnesyl isothiocyanate ( 2) resulted in a higher incorporation of label than with [C-14]-farnesyl isocyanide ( 5). Farnesyl isocyanide was incorporated into farnesyl isothiocyanate in agreement with labelling studies in other marine sponges. Both farnesyl isocyanide and isothiocyanate were further incorporated into axinyssamide A ( 11) as well as the cyclized dichloroimines (12)-(14), ( 16) that represent more advanced biosynthetic products of this pathway. These results identify the likely biosynthetic pathway leading to the major metabolites of S. aurantium.