84 resultados para Irrigation equipment industry.
em University of Queensland eSpace - Australia
Resumo:
Work-related falls continues to be one of the leading causes of fatalities in the Australian construction industry, and the failure to use fall protection equipment, such as fall-arrest harnesses and arresting devices, has been found to be a contributing factor. In an attempt to gain an understanding of the issues surrounding the use of fallarrest harness systems by construction workers a study involving semi-structured interviews of 15 male construction workers was carried out at three construction sites. The majority of interviewees commented that there was discomfort in wearing a fall-arrest harness; that there were a number of problems when anchored via an arresting device; and that using a fall-arrest system reduced productivity. Most of the interviewees considered that they needed safety precautions against falls, and they expressed the view that workers’ attitudes towards safety depended critically upon their supervisors’ attitude towards safety. It was also found that workers were not trained in rescue procedures. Interviewees expressed concern that retrieval of a suspended worker may not be carried out in time to prevent the onset of suspension trauma. A number of issues were identified which require further research, such as, investigation into suspension trauma, harness and arresting device design, training provided to workers, and the provision for rescues.
Resumo:
The resource potential of shallow water tables for cropping systems has been investigated using the Australian sugar industry as a case study. Literature concerning shallow water table contributions to sugarcane crops has been summarised, and an assessment of required irrigation for water tables to depths of 2 m investigated using the SWIMv2.1 soil water balance model for three different soils. The study was undertaken because water availability is a major limitation for sugarcane and other crop production systems in Australia and knowledge on how best to incorporate upflow from water tables in irrigation scheduling is limited. Our results showed that for the three soils studied (representing a range of permeabilities as defined by near-saturated hydraulic conductivities), no irrigation would be required for static water tables within 1 m of the soil surface. Irrigation requirements when static water tables exceeded 1 m depth were dependent on the soil type and rooting characteristics (root depth and density). Our results also show that the near-saturated hydraulic conductivities are a better indicator of the ability of water tables below 1 m to supply sufficient upflow as opposed to soil textural classifications. We conclude that there is potential for reductions in irrigation and hence improvements in irrigation water use efficiency in areas where shallow water tables are a low salinity risk: either fresh, or the local hydrology results in net recharge. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Objective To quantify the temperature changes in the dental pulp associated with equine dental procedures using power grinding equipment. Design A matrix experimental design with replication on the same sample was followed to allow the following independent variables to be assessed: horse age (young or old), tooth type (premolar or molar), powered grinding instrument (rotating disc or die grinder), grinding time (15 or 20 seconds) and the presence or absence of water coolant. Procedure Sound premolar and molar teeth from a 6-year-old horse and a 15-year-old horse, which had been removed postmortem, were sectioned parallel to the occlusal plane to allow placement of a miniature thermocouple at the level of the dental pulp. The maximum temperature increase, the time taken to reach this maximum and the cooling time were measured (n=10 in each study). The teeth were placed in a vice and the instrument used on the tooth as per clinical situation. Results Significant differences were recorded for horse age (P < 0.001), instrument type (P < 0.001), grinding time (P < 0.001) and presence or absence of coolant (P < 0.001). There was no significant difference for tooth type. Conclusion Thermal insult to the dental pulp from the use of power instruments poses a significant risk to the tooth. This risk can be reduced or eliminated by appropriate selection of treatment time and by the use of water irrigation as a coolant. The increased dentine thickness in older horses appears to mitigate against thermal injury from frictional heat.
Resumo:
For leased equipment the lessor incurs penalty costs for failures occurring over the lease period and for not rectifying such failures within a specified time limit. Through preventive maintenance actions the penalty costs can be reduced but this is achieved at the expense of increased maintenance costs. The paper looks at a periodic preventive maintenance policy which achieves a tradeoff between the penalty and maintenance costs. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
For leased equipment, the lessor carries out the maintenance of the equipment. Usually, the contract of lease specifies the penalty for equipment failures and for repairs not being carried out within specified time limits. This implies that optimal preventive maintenance policies must take these penalty costs into account and properly traded against the cost of preventive maintenance actions. The costs associated with failures are high as unplanned corrective maintenance actions are costly and the resulting penalties due to lease contract terms being violated. The paper develops a model to determine the optimal parameters of a preventive maintenance policy that takes into account all these costs to minimize the total expected cost to the lessor for new item lease. The parameters of the policy are (i) the number of preventive maintenance actions to be carried out over the lease period, (ii) the time instants for such actions, and (iii) the level of action. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Abstract: Purpose – The aim of this research is to determine the optimal upgrade and preventive maintenance actions that minimize the total expected cost (maintenance costs+penalty costs). Design/methodology/approach – The problem is a four-parameter optimization with two parameters being k-dimensional. The optimal solution is obtained by using a four-stage approach where at each stage a one-parameter optimization is solved. Findings – Upgrading action is an extra option before the lease of used equipment, in addition to preventive maintenance action. Upgrading action makes equipment younger and preventive maintenance action lowers the ROCOF. Practical implications – There is a growing trend towards leasing equipment rather than owning it. The lease contract contains penalties if the equipment fails often and repairs are done within reasonable time period. This implies that the lessor needs to look at optimal preventive maintenance strategies in the case of new equipment lease, and upgrade actions plus preventive maintenance in the case of used equipment lease. The paper deals with this topic and is of great significant to business involved with leasing equipment. Originality/value – Nowadays many organizations are interested in leasing equipment and outsourcing maintenance. The model in this paper addresses the preventive maintenance problem for leased equipment. It provides an approach to dealing with this problem.
Resumo:
View of exterior wall to warehouse.
Resumo:
Detailed view of downpipes and drainage grill.
Resumo:
View past tiered amphitheatre and offices above to air strip beyond.
Resumo:
View past timber blinds to balcony and timber sunscreens.
Resumo:
View of post being hoisted into position during construction.
Resumo:
View of warehouse exterior.
Resumo:
Detailed view of poles used in construction. Poles were spliced in their length with steel bars (like 3 pin plugs) and these joints were restrained from splitting with steel strap belts. The belts were tightened with opposing wedges like the old Greene & Greene wrought iron detail.
Resumo:
View of warehouse exterior.