3 resultados para Iron saturated bovine lactoferrin
em University of Queensland eSpace - Australia
Resumo:
The rates of reduction of FeO from iron-saturated FeO-CaO-Al2O3-SiO2 slags by graphite, coke, bituminous coal and anthracitic coal chars at temperatures in the range 1 673-1873 K have been measured using a sessile drop technique. The extents of reaction were determined using EPMA analysis of quenched samples, and on line gas analysis using a quadrupole mass spectrometer. The reaction rates have been shown to be dependent critically on carbon type. For the reaction geometry used in this investigation the reduction rates of graphite and coke are observed to be faster than with coal chars. This unexpected finding is shown to be associated with differences in the dominant chemical and mass transfer mechanisms occurring at the reaction interface. High reaction rates are observed to occur with the formation of liquid Fe-C alloy product and the associated gasification of carbon from the alloy. The rates of reduction by coal chars are determined principally by the chemical reaction at the carbon/gas interface and slag phase mass transfer.
Resumo:
The reduction of FeO from iron-saturated FeO-CaO-Al2O3-SiO2 slags by graphite, coke and coal char at 1 673 K has been investigated using a sessile drop technique. Metallographic analysis of samples quenched from the reaction temperature, and in situ observations of the reaction interface, reveal significant differences in the slag/carbon contact, and in the morphologies of the product iron and its composition; these differences were found to depend on the carbon type used in the reduction. In particular it has been shown that, in the case of graphite and coke, liquid Fe-C droplets were rapidly formed at the slag/C interface. Reactions of the slag with coal chars, in contrast, result predominantly in the formation of solid iron. These observations indicate that the reaction pathways, and hence reaction kinetics, are dependent on carbon type.
Resumo:
Shale-normalised rare earth element and yttrium (REE + Y) patterns for siderite-jasper couples in a banded iron formation of the 3.45 Ga Panorama Formation, Warrawoona Group, eastern Pilbara Craton, display distinct positive Y and Eu anomalies and weak positive La and Gd anomalies, combined with depleted light REE relative to middle and heavy REE. Ambient seawater and hydrothermal fluids are identified as major sources of REE + Y for the BIF. In the case of siderites, strong correlations between incompatible trace elements and trace element ratios diagnostic of seawater indicate variable input from a terrigenous source (e.g. volcanic ash). We propose a volcanic caldera setting as a likely depositional environment where jasper and siderite precipitated as alternating bands in response to episodic changes in ambient water chemistry. The episodicity was either driven by fluctuations in the intensity of hydrothermal activity or changes in magma chamber activity, which in turn controlled relative sea level. In this context, precipitation of jasper probably reflects background conditions during which seawater was saturated in silica due to evaporative conditions, while siderites were deposited most likely during intermittent periods of enhanced volcanic activity when seawater was more acidic due to the release of exhalative phases (e.g. CO2). © 2005 Elsevier B.V. All rights reserved.