6 resultados para Iron Homeostasis, Matriptase-2, Proteolytic Regulator
em University of Queensland eSpace - Australia
Protective Iron Carbonate Films—Part 2: Chemical Removal by Dissolution in Single-Phase Aqueous Flow
Resumo:
Copper and iron metabolism intersect in mammals. Copper deficiency simultaneously leads to decreased iron levels in some tissues and iron deficiency anemia, whereas it results in iron overload in other tissues such as the intestine and liver. The copper requirement of the multicopper ferroxidases hephaestin and ceruloplasmin likely explains this link between copper and iron homeostasis in mammals. We investigated the effect of in vivo and in vitro copper deficiency on hephaestin (Heph) expression and activity. C57BL/6J mice were separated into 2 groups on the day of parturition. One group was fed a copper-deficient diet and another was fed a control diet for 6 wk. Copper-deficient mice had significantly lower hephaestin and ceruloplasmin (~50% of controls) ferroxidase activity. Liver hepcidin expression was significantly downregulated by copper deficiency (~60% of controls), and enterocyte mRNA and protein levels of ferroportin1 were increased to 2.5 and 10 times, respectively, relative to controls, by copper deficiency, indicating a systemic iron deficiency in the copper-deficient mice. Interestingly, hephaestin protein levels were significantly decreased to ~40% of control, suggesting that decreased enterocyte copper content leads to decreased hephaestin synthesis and/or stability. We also examined the effect of copper deficiency on hephaestin in vitro in the HT29 cell line and found dramatically decreased hephaestin synthesis and activity. Both in vivo and in vitro studies indicate that copper is required for the proper processing and/or stability of hephaestin.
Resumo:
Hepcidin is a liver-expressed antimicrobial and iron regulatory peptide. A number of studies have indicated that hepcidin is important for the correct regulation of body iron homeostasis. The aims of this study were to analyse the expression, trafficking and regulation of human hepcidin in an in vitro cell culture system. Human hepcidin was transfected into human embryonic kidney cells. Immunofluorescence and confocal microscopy analysis revealed that recombinant hepcidin localised to the Golgi complex. Recombinant hepcidin is secreted from the cell within 1 h of its synthesis. Recombinant hepcidin was purified from the cell culture medium using ion-exchange and metal-affinity chromatography and was active in antimicrobial assays. Amino-terminal sequence analysis of the secreted peptide revealed that it was the mature 25 amino acid form of hepcidin. Our results show that recombinant myc-His tagged human hepcidin was expressed, processed and secreted correctly and biologically active in antimicrobial assays. (C) 2005 Elsevier SAS. All rights reserved.
Resumo:
Neogenin, a close relative of the axon guidance receptor Deleted in Colorectal Cancer (DCC), has been shown to be a receptor for members of the Netrin and Repulsive Guidance Molecule (RGM) families. While Netrin-l-Neogenin interactions result in a chernoattractive axon guidance response, the interaction between Neogenin and RGMa induces a chemorepulsive response. Evidence is now accumulating that Neogenin is a multi-functional receptor regulating many diverse developmental processes, including neural tube and mammary gland formation, myogenesis and angiogenesis. Little is known of the function of Neogenin in the adult, however, a novel role in the regulation of iron homeostasis is now emerging. While the signal transduction pathways activated by Neogenin are poorly understood, it is clear that the functional outcome of Neogenin activation, at least in the embryo, depends on both the developmental context as well as the nature of the ligand. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Sensory transduction in the mammalian cochlea requires the maintenance of specialized fluid compartments with distinct ionic compositions. This is achieved by the concerted action of diverse ion channels and transporters, some of which can interact with the PDZ scaffolds, Na+-H+ exchanger regulatory factors 1 and 2 (NHERF-1, NHERF-2). Here, we report that NHERF-1 and NHERF-2 are widely expressed in the rat cochlea, and that their expression is developmentally regulated. Reverse transcription/polymerase chain reaction (RT-PCR) and Western blotting initially confirmed the RNA and protein expression of NHERFs. We then performed immunohistochemistry on cochlea during various stages of postnatal development. Prior to the onset of hearing (P8), NHERF-1 immunolabeling was prominently polarized to the apical membrane of cells lining the endolymphatic compartment, including the stereocilia and cuticular plates of the inner and outer hair cells, marginal cells of the stria vascularis, Reissner's epithelia, and tectorial membrane. With maturation (P21, P70), NHERF-1 immunolabeling was reduced in the above structures, whereas labeling increased in the apical membrane of the interdental cells of the spiral limbus and the inner and outer sulcus cells, Hensen's cells, the inner and outer pillar cells, Deiters cells, the inner border cells, spiral ligament fibrocytes, and spiral ganglion neurons (particularly type II). NHERF-1 expression in strial basal and intermediate cells was persistent. NHERF-2 immunolabeling was similar to that for NHERF-1 during postnatal development, with the exception of expression in the synaptic regions beneath the outer hair cells. NHERF-1 and NHERF-2 co-localized with glial fibrillary acidic protein and vimentin in glia. The cochlear localization of NHERF scaffolds suggests that they play important roles in the developmental regulation of ion transport, homeostasis, and auditory neurotransmission.