12 resultados para Ionospheric weather

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on a total electron content space weather study of the nighttime Weddell Sea Anomaly, overlooked by previously published TOPEX/Poseidon climate studies, and of the nighttime ionosphere during the 1996/1997 southern summer. To ascertain the morphology of spatial TEC distribution over the oceans in terms of hourly, geomagnetic, longitudinal and summer-winter variations, the TOPEX TEC, magnetic, and published neutral wind velocity data are utilized. To understand the underlying physical processes, the TEC results are combined with inclination and declination data plus global magnetic field-line maps. To investigate spatial and temporal TEC variations, geographic/magnetic latitudes and local times are computed. As results show, the nighttime Weddell Sea Anomaly is a large (∼1,600(°)2; ∼22 million km2 estimated for a steady ionosphere) space weather feature. Extending between 200°E and 300°E (geographic), it is an ionization enhancement peaking at 50°S–60°S/250°E–270°E and continuing beyond 66°S. It develops where the spacing between the magnetic field lines is wide/medium, easterly declination is large-medium (20°–50°), and inclination is optimum (∼55°S). Its development and hourly variations are closely correlated with wind speed variations. There is a noticeable (∼43%) reduction in its average area during the high magnetic activity period investigated. Southern summer nighttime TECs follow closely the variations of declination and field-line configuration and therefore introduce a longitudinal division of four (Indian, western/eastern Pacific, Atlantic). Northern winter nighttime TECs measured over a limited area are rather uniform longitudinally because of the small declination variation. TOPEX maps depict the expected strong asymmetry in TEC distribution about the magnetic dip equator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the Western-Pacific region spread-F has been found to occur with delays after geomagnetic activity (GA) ranging from 5 to 10 days as station groups are considered from low midlatitudes to equatorial regions. The statistical (superposed-epoch) analyses also indicate that at the equator the spread-F, and therefore associated medium-scale traveling ionospheric disturbances (MS-TIDs) occur with additional delays around 16, 22 and 28 days representing a 6-day modulation of the delay period. These results are compared with similar delays, including the modulation, for D-region enhanced hydroxyl emission (Shefov, 1969). It is proposed that this similarity may be explained by MS-TIDs influencing both the F and D regions as they travel. Long delays of over 20 days are also found near the equator for airglow-measured MS-TIDs (Sobral et al., 1997). These are recorded infrequently and have equatorward motions, while normally eastward motions are measured at the equator. Also in midlatitudes D-region absorption events have been shown (statistically) to have similar long delays after GA. It is suggested that atmospheric gravity waves and associated MS-TIDs may be generated by some of the precipitations responsible for the absorption. The recording of the delayed spread-F events depends on the GA being well below the average levels around sunset on the nights of recording. This implies that lower upper-atmosphere neutral particle densities are necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queensland fruit fly, Bactrocera (Dacus) tryoni (QFF) is arguably the most costly horticultural insect pest in Australia. Despite this, no model is available to describe its population dynamics and aid in its management. This paper describes a cohort-based model of the population dynamics of the Queensland fruit fly. The model is primarily driven by weather variables, and so can be used at any location where appropriate meteorological data are available. In the model, the life cycle is divided into a number of discreet stages to allow physiological processes to be defined as accurately as possible. Eggs develop and hatch into larvae, which develop into pupae, which emerge as either teneral females or males. Both females and males can enter reproductive and over-wintering life stages, and there is a trapped male life stage to allow model predictions to be compared with trap catch data. All development rates are temperature-dependent. Daily mortality rates are temperature-dependent, but may also be influenced by moisture, density of larvae in fruit, fruit suitability, and age. Eggs, larvae and pupae all have constant establishment mortalities, causing a defined proportion of individuals to die upon entering that life stage. Transfer from one immature stage to the next is based on physiological age. In the adult life stages, transfer between stages may require additional and/or alternative functions. Maximum fecundity is 1400 eggs per female per day, and maximum daily oviposition rate is 80 eggs/female per day. The actual number of eggs laid by a female on any given day is restricted by temperature, density of larva in fruit, suitability of fruit for oviposition, and female activity. Activity of reproductive females and males, which affects reproduction and trapping, decreases with rainfall. Trapping of reproductive males is determined by activity, temperature and the proportion of males in the active population. Limitations of the model are discussed. Despite these, the model provides a useful agreement with trap catch data, and allows key areas for future research to be identified. These critical gaps in the current state of knowledge exist despite over 50 years of research on this key pest. By explicitly attempting to model the population dynamics of this pest we have clearly identified the research areas that must be addressed before progress can be made in developing the model into an operational tool for the management of Queensland fruit fly. (C) 2003 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors present a super-fast scanning (SFS) technique for phased array weather radar applications. The fast scanning feature of the SFS technique is described and its drawbacks identified. Techniques which combat these drawbacks are also presented. A concept design phased array radar system (CDPAR) is used as a benchmark to compare the performance of a conventional scanning phased array radar system with the SFS technique. It is shown that the SFS technique, in association with suitable waveform processing, can realise four times the scanning speed and achieve similar accuracy compared to the conventional phased array benchmark.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive coral bleaching Occurred intertidally in early August 2003 in the Capricorn Bunker group (Wistari Reef, Heron and One Tree Islands; Southern Great Barrier Reef). The affected intertidal coral had been exposed to unusually cold (minimum = 13.3degreesC; wet bulb temperature = 9degreesC) and dry winds (44% relative humidity) for 2 d during predawn low tides. Coral bleached in the upper 10 cm of their branches and had less than 0.2 x 10(6) cell cm(-2) as compared with over 2.5 x 10(6), Cell cm(-2) in nonbleached areas. Dark-adapted quantum yields did not differ between symbionts in bleached and nonbleached areas. Exposing symbionts to light, however, led to greater quenching of Photosystem 11 in symbionts in the bleached coral. Bleached areas of the affected colonies had died by September 2003, with areas that were essentially covered by more than 80% living coral decreasing to less than 10% visible living coral cover. By January 2004, coral began to recover, principally from areas of colonies that were not exposed during low tide (i.e., from below dead, upper regions). These data highlight the importance of understanding local weather patterns as well as the effects of longer term trends in global climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 35 year chronology from 1965 to 2000 of the deposition of wind-blown sediment is constructed from snowpits for coastal southern Victoria Land, Antarctica. Analysis of local meteorology, contemporary eolian sedimentation, and mineralogy confirm a Victoria Valley provenance, while the presence of volcanic tephra is ascribed to an Erebus volcanic province source. Winter foelm winds associated with anticyclonic circulation are considered responsible for transporting fine-grained sediment from the snow- and ice-free Victoria Valley east toward the coast, while cyclonic storms transport tephra north along the Scott Coast. No trend could be identified in the occurrence of either tephra or wind-blown sediments sourced from the Victoria Valley and retrieved from the snowpits; excavated on the Victoria Lower and Wilson Piedmont Glaciers. We infer this to indicate that the region has not undergone a significant change in weather patterns for at least the last 35 years. Our results also confirm the McMurdo Dry Valleys as a regionally significant source of wind-blown sediment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A long-term planning method for the electricity market is to simulate market operation into the future. Outputs from market simulation include indicators for transmission augmentation and new generation investment. A key input to market simulations is demand forecasts. For market simulation purposes, regional demand forecasts for each half-hour interval of the forecasting horizon are required, and they must accurately represent realistic demand profiles and interregional demand relationships. In this paper, a demand model is developed to accurately model these relationships. The effects of uncertainty in weather patterns and inherent correlations between regional demands on market simulation results are presented. This work signifies the advantages of probabilistic modeling of demand levels when making market-based planning decisions.