36 resultados para Inverse Methodology
em University of Queensland eSpace - Australia
Resumo:
An inverse methodology is described to assist in the design of radio-frequency (RF) coils for magnetic resonance imaging (MRI) applications. The time-harmonic electromagnetic Green's functions are used to calculate current on the coil and shield cylinders that will generate a specified internal magnetic field. Stream function techniques and the method of moments are then used to implement this theoretical current density into an RF coil. A novel asymmetric coil operating for a 4.5 T MRI machine was designed and constructed using this methodology and the results are presented.
Resumo:
An inverse methodology for the design of biologically loaded radio-frequency (RF) coils for magnetic resonance imaging applications is described. Free space time-harmonic electromagnetic Green's functions and de-emphasized B-1 target fields are used to calculate the current density on the coil cylinder. In theory, with the B-1 field de-emphasized in the middle of the RF transverse plane, the calculated current distribution can generate an internal magnetic field that can reduce the central overemphasis effect caused by field/tissue interactions at high frequencies. The current distribution of a head coil operating at 4 T (170 MHz) is calculated using an inverse methodology with de-emphasized B-1. target fields. An in-house finite-difference time-domain routine is employed to evaluate B-1 field and signal intensity inside a homogenous cylindrical phantom and then a complete human head model. A comparison with a conventional RF birdcage coil is carried out and demonstrates that this method can help in decreasing the normal bright region caused by field/tissue interactions in head images at 170 MHz and higher field strengths.
Resumo:
An inverse methodology to assist in the design of radio-frequency (RF) head coils for high field MRI application is described in this work. Free space time-harmonic electromagnetic Green's functions and preemphasized B1 field are used to calculate the current density on the coil cylinder. With B1 field preemphasized and lowered in the middle of the RF transverse plane, the calculated current distribution can generate an internal magnetic field that can reduce the EM field/tissue interactions at high frequencies. The current distribution of a head coil operating at 4 T is calculated using inverse methodology with preemphasized B1 fields. FDTD is employed to calculate B1 field and signal intensity inside a homogenous cylindrical phantom and human head. A comparison with conventional RF birdcage coil is reported here and demonstrated that inverse-method designed coil with preemphasized B1 field can help in decreasing the notorious bright region caused by EM field/tissue interactions in the human head images at 4 T.
Resumo:
In this paper, numerical simulations are used in an attempt to find optimal Source profiles for high frequency radiofrequency (RF) volume coils. Biologically loaded, shielded/unshielded circular and elliptical birdcage coils operating at 170 MHz, 300 MHz and 470 MHz are modelled using the FDTD method for both 2D and 3D cases. Taking advantage of the fact that some aspects of the electromagnetic system are linear, two approaches have been proposed for the determination of the drives for individual elements in the RF resonator. The first method is an iterative optimization technique with a kernel for the evaluation of RF fields inside an imaging plane of a human head model using pre-characterized sensitivity profiles of the individual rungs of a resonator; the second method is a regularization-based technique. In the second approach, a sensitivity matrix is explicitly constructed and a regularization procedure is employed to solve the ill-posed problem. Test simulations show that both methods can improve the B-1-field homogeneity in both focused and non-focused scenarios. While the regularization-based method is more efficient, the first optimization method is more flexible as it can take into account other issues such as controlling SAR or reshaping the resonator structures. It is hoped that these schemes and their extensions will be useful for the determination of multi-element RF drives in a variety of applications.
Resumo:
Radio-frequency (RF) coils are a necessary component of magnetic resonance imaging (MRI) systems. When used in transmit operation, they act to generate a homogeneous RF magnetic field within a volume of interest and when in receive operation, they act to receive the nuclear magnetic resonance signal from the RF-excited specimen. This paper outlines a procedure for the design of open RF coils using the time-harmonic inverse method. This method entails the calculation of an ideal current density on a multipaned planar surface that would generate a specified magnetic field within the volume of interest. Because of the averaging effect of the regularization technique in the matrix solution, the specified magnetic field is shaped within an iterative procedure until the generated magnetic field matches the desired magnetic field. The stream-function technique is used to ascertain conductor positions and a method of moments package is then used to finalize the design. An open head/neck coil was designed to operate in a clinical 2T MRI system and the presented results prove the efficacy of this design methodology.
Resumo:
A calibration methodology based on an efficient and stable mathematical regularization scheme is described. This scheme is a variant of so-called Tikhonov regularization in which the parameter estimation process is formulated as a constrained minimization problem. Use of the methodology eliminates the need for a modeler to formulate a parsimonious inverse problem in which a handful of parameters are designated for estimation prior to initiating the calibration process. Instead, the level of parameter parsimony required to achieve a stable solution to the inverse problem is determined by the inversion algorithm itself. Where parameters, or combinations of parameters, cannot be uniquely estimated, they are provided with values, or assigned relationships with other parameters, that are decreed to be realistic by the modeler. Conversely, where the information content of a calibration dataset is sufficient to allow estimates to be made of the values of many parameters, the making of such estimates is not precluded by preemptive parsimonizing ahead of the calibration process. White Tikhonov schemes are very attractive and hence widely used, problems with numerical stability can sometimes arise because the strength with which regularization constraints are applied throughout the regularized inversion process cannot be guaranteed to exactly complement inadequacies in the information content of a given calibration dataset. A new technique overcomes this problem by allowing relative regularization weights to be estimated as parameters through the calibration process itself. The technique is applied to the simultaneous calibration of five subwatershed models, and it is demonstrated that the new scheme results in a more efficient inversion, and better enforcement of regularization constraints than traditional Tikhonov regularization methodologies. Moreover, it is argued that a joint calibration exercise of this type results in a more meaningful set of parameters than can be achieved by individual subwatershed model calibration. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Kalman inverse filtering is used to develop a methodology for real-time estimation of forces acting at the interface between tyre and road on large off-highway mining trucks. The system model formulated is capable of estimating the three components of tyre-force at each wheel of the truck using a practical set of measurements and inputs. Good tracking is obtained by the estimated tyre-forces when compared with those simulated by an ADAMS virtual-truck model. A sensitivity analysis determines the susceptibility of the tyre-force estimates to uncertainties in the truck's parameters.
Resumo:
A simple design process for the design of elliptical cross-section, transverse gradient coils for use in magnetic resonance imaging (MRI) is presented. This process is based on a flexible stochastic optimization method and results in designs of high linearity and efficiency with low switching times. A design study of a shielded, transverse asymmetric elliptical coil set for use in neural imaging is presented and includes the minimization of the torques experienced by the gradient set.
Resumo:
This paper describes a hybrid numerical method of an inverse approach to the design of compact magnetic resonance imaging magnets. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first, kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. The emphasis of this work is on the optimal design of short MRI magnets. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric MRI magnets as well as asymmetric magnets. The results highlight that the method can be used to obtain a compact MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1 m in length, significantly shorter than current designs. Viable asymmetric magnet designs, in which the edge of the homogeneous region is very close to one end of the magnet system are also presented. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries. (C) 2000 American Association of Physicists in Medicine. [S0094-2405(00)00303-5].
Resumo:
The earth's tectonic plates are strong, viscoelastic shells which make up the outermost part of a thermally convecting, predominantly viscous layer. Brittle failure of the lithosphere occurs when stresses are high. In order to build a realistic simulation of the planet's evolution, the complete viscoelastic/brittle convection system needs to be considered. A particle-in-cell finite element method is demonstrated which can simulate very large deformation viscoelasticity with a strain-dependent yield stress. This is applied to a plate-deformation problem. Numerical accuracy is demonstrated relative to analytic benchmarks, and the characteristics of the method are discussed.
Resumo:
To understand the dynamic mechanisms of the mechanical milling process in a vibratory mill, it is necessary to determine the characteristics of the impact forces associated with the collision events. However, it is difficult to directly measure the impact force in an operating mill. This paper describes an inverse technique for the prediction of impact forces from acceleration measurements on a vibratory ball mill. The characteristics of the vibratory mill have been investigated by the modal testing technique, and its system modes have been identified. In the modelling of the system vibration response to the impact forces, two modal equations have been used to describe the modal responses. The superposition of the modal responses gives rise to the total response of the system. A method based on an optimisation approach has been developed to predict the impact forces by minimising the difference between the measured acceleration of the vibratory ball mill and the predicted acceleration from the solution of the modal equations. The predicted and measured impact forces are in good agreement. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
As nuclear magnetic resonance imaging and spectroscopy move inexorably toward higher field-strength magnets in search of improved signal-to-noise ratio, spectral resolution, and spatial resolution, the way in which radiofrequency (RF) probes are designed changes. At higher frequencies, resonant cavities become the favored RF ''coil'' type and may be built using streamline elements to reduce the inductance of the system. In modeling such systems, the quasi-static approach of assuming that current flows evenly in all conductor cross sections and that adjacent conductors do not affect each other becomes less reasonable. The proximity of RF conductors in resonators typically causes RF eddy currents to flow, whereby the current density in each rung is altered by the RF fields generated by nearby conductors. The proper understanding and prediction of how resonators will perform require a model of the current densities flowing in conducting sections, including all RF eddy current effects. Very few models of this type have been presented in the literature. This article presents an overview of one such model and of how it may be applied to a variety of resonators, both shielded and unshielded, circular, and elliptical, in cross section. Results are presented from a shielded head coil operating at 2 tesla. (C) 1997 John Wiley & Sons, Inc.