14 resultados para Inventory system with finite backlog

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a three-level V-type atomic system with the ground state coupled by a laser field to only one of the excited states, and with the two excited states coupled together by a dc field. Although the dipole moments of the two dipole-allowed transitions are assumed perpendicular, we demonstrate that this system emulates to a large degree a three-level system with parallel dipole moments-the latter being a system that exhibits quantum interference and displays a number of interesting features. As examples, we show that the system can produce extremely large values for the intensity-intensity correlation function, and that its resonance fluorescence spectrum can display ultranarrow lines. The dressed states for this system are identified, and the spectral features are interpreted in terms of transitions among these dressed states. We also show that this system is capable of exhibiting considerable squeezing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superplastic bulging is the most successful application of superplastic forming (SPF) in industry, but the non-uniform wall thickness distribution of parts formed by it is a common technical problem yet to be overcome. Based on a rigid-viscoplastic finite element program developed by the authors, for simulation of the sheet superplastic forming process combined with the prediction of microstructure variations (such as grain growth and cavity growth), a simple and efficient preform design method is proposed and applied to the design of preform mould for manufacturing parts with uniform wall thickness. Examples of formed parts are presented here to demonstrate that the technology can be used to improve the uniformity of wall thickness to meet practical requirements. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental study of a planar microwave imaging system with step-frequency synthesized pulse for possible use in medical applications is described. Simple phantoms, consisting of a cylindrical plastic container with air or oil imitating fatty tissues and small highly reflective objects emulating tumors, are scanned with a probe antenna over a planar surface in the X-band. Different calibration schemes are considered for successful detection of these objects. (c) 2006 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents investigations into an indoor 2×2 multiple input multiple output (MIMO) system, whose diversity performance is assessed using a high precision test-bed. In this system, transmitter and receiver are equipped with 180° or 90° 3dB hybrids with their two output ports terminated with co-polar monopole antennas. By feeding a signal to one of the two input ports of the hybrid (while the other input port is matched terminated) different communication channels in a rich-scattering environment can be created. The test-bed allows for the signal strength measurements around the receiver/ transmitter sides for a given feeding configuration of hybrids when the receiver is moved over a circular region in an indoor environment. The signal strengths maps obtained for various modes of this 2×2 MIMO system are foundations for investigating transmit/receive diversity schemes. As the signal strength measurement results are obtained with Bluetooth modules operating in the ISM 2.4 GHz, the results are of importance to many other wireless systems that aim at utilizing MIMO diversity schemes to enhance their performance in this frequency band.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bifurcation analysis is a very useful tool for power system stability assessment. In this paper, detailed investigation of power system bifurcation behaviour is presented. One and two parameter bifurcation analysis are conducted on a 3-bus power system. We also examined the impact of FACTS devices on power system stability through Hopf bifurcation analysis by taking static Var compensator (SVC) as an example. A simplified first-order model of the SVC device is included in the 3-bus sample system. Real and reactive powers are used as bifurcation parameter in the analysis to compare the system oscillatory properties with and without SVC. The simulation results indicate that the linearized system model with SVC enlarge the voltage stability boundary by moving Hopf bifurcation point to higher level of loading conditions. The installation of SVC increases the dynamic stability range of the system, however complicates the Hopf bifurcation behavior of the system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the presence of nonionic block-copolymer surfactant, nanocrystalline zirconia particles with MSU mesostrucmre were synthesized by a novel solid-state reaction route. The zirconia particles possess a nanocrystalline pore wall, which renders higher thermal stability compared to an amorphous framework. To further enhance its stability, laponite, a synthetic clay, was introduced. Laponite acts as an inhibitor to crystal a growth and also as a hard template for the mesostructure. High surface area and ordered pore structure were observed in the stabilized zirconia. The results show that the formation of the MSU structure is attributed to reverse hexagonal micelles, which are the products of the cooperative self-assembly of organic and inorganic species in the solid-state synthesis system with crystalline water and hygroscopic water present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When can a quantum system of finite dimension be used to simulate another quantum system of finite dimension? What restricts the capacity of one system to simulate another? In this paper we complete the program of studying what simulations can be done with entangling many-qudit Hamiltonians and local unitary control. By entangling we mean that every qudit is coupled to every other qudit, at least indirectly. We demonstrate that the only class of finite-dimensional entangling Hamiltonians that are not universal for simulation is the class of entangling Hamiltonians on qubits whose Pauli operator expansion contains only terms coupling an odd number of systems, as identified by Bremner [Phys. Rev. A 69, 012313 (2004)]. We show that in all other cases entangling many-qudit Hamiltonians are universal for simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter presents an analytical model for evaluating the Bit Error Rate (BER) of a Direct Sequence Code Division Multiple Access (DS-CDMA) system, with M-ary orthogonal modulation and noncoherent detection, employing an array antenna operating in a Nakagami fading environment. An expression of the Signal to Interference plus Noise Ratio (SINR) at the output of the receiver is derived, which allows the BER to be evaluated using a closed form expression. The analytical model is validated by comparing the obtained results with simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show how to efficiently simulate a quantum many-body system with tree structure when its entanglement (Schmidt number) is small for any bipartite split along an edge of the tree. As an application, we show that any one-way quantum computation on a tree graph can be efficiently simulated with a classical computer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foreign exchange trading has emerged in recent times as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process is very helpful. In this paper, we try to create such a system with a genetic algorithm engine to emulate trader behaviour on the foreign exchange market and to find the most profitable trading strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The developments of models in Earth Sciences, e.g. for earthquake prediction and for the simulation of mantel convection, are fare from being finalized. Therefore there is a need for a modelling environment that allows scientist to implement and test new models in an easy but flexible way. After been verified, the models should be easy to apply within its scope, typically by setting input parameters through a GUI or web services. It should be possible to link certain parameters to external data sources, such as databases and other simulation codes. Moreover, as typically large-scale meshes have to be used to achieve appropriate resolutions, the computational efficiency of the underlying numerical methods is important. Conceptional this leads to a software system with three major layers: the application layer, the mathematical layer, and the numerical algorithm layer. The latter is implemented as a C/C++ library to solve a basic, computational intensive linear problem, such as a linear partial differential equation. The mathematical layer allows the model developer to define his model and to implement high level solution algorithms (e.g. Newton-Raphson scheme, Crank-Nicholson scheme) or choose these algorithms form an algorithm library. The kernels of the model are generic, typically linear, solvers provided through the numerical algorithm layer. Finally, to provide an easy-to-use application environment, a web interface is (semi-automatically) built to edit the XML input file for the modelling code. In the talk, we will discuss the advantages and disadvantages of this concept in more details. We will also present the modelling environment escript which is a prototype implementation toward such a software system in Python (see www.python.org). Key components of escript are the Data class and the PDE class. Objects of the Data class allow generating, holding, accessing, and manipulating data, in such a way that the actual, in the particular context best, representation is transparent to the user. They are also the key to establish connections with external data sources. PDE class objects are describing (linear) partial differential equation objects to be solved by a numerical library. The current implementation of escript has been linked to the finite element code Finley to solve general linear partial differential equations. We will give a few simple examples which will illustrate the usage escript. Moreover, we show the usage of escript together with Finley for the modelling of interacting fault systems and for the simulation of mantel convection.