13 resultados para Inuitive Logics
em University of Queensland eSpace - Australia
Resumo:
Defeasible reasoning is a simple but efficient approach to nonmonotonic reasoning that has recently attracted considerable interest and that has found various applications. Defeasible logic and its variants are an important family of defeasible reasoning methods. So far no relationship has been established between defeasible logic and mainstream nonmonotonic reasoning approaches. In this paper we establish close links to known semantics of logic programs. In particular, we give a translation of a defeasible theory D into a meta-program P(D). We show that under a condition of decisiveness, the defeasible consequences of D correspond exactly to the sceptical conclusions of P(D) under the stable model semantics. Without decisiveness, the result holds only in one direction (all defeasible consequences of D are included in all stable models of P(D)). If we wish a complete embedding for the general case, we need to use the Kunen semantics of P(D), instead.
Resumo:
This paper describes a logic of progress for concurrent programs. The logic is based on that of UNITY, molded to fit a sequential programming model. Integration of the two is achieved by using auxiliary variables in a systematic way that incorporates program counters into the program text. The rules for progress in UNITY are then modified to suit this new system. This modification is however subtle enough to allow the theory of Owicki and Gries to be used without change.
Resumo:
In this paper we present a Gentzen system for reasoning with contrary-to-duty obligations. The intuition behind the system is that a contrary-to-duty is a special kind of normative exception. The logical machinery to formalise this idea is taken from substructural logics and it is based on the definition of a new non-classical connective capturing the notion of reparational obligation. Then the system is tested against well-known contrary-to-duty paradoxes.
Resumo:
Since Z, being a state-based language, describes a system in terms of its state and potential state changes, it is natural to want to describe properties of a specified system also in terms of its state. One means of doing this is to use Linear Temporal Logic (LTL) in which properties about the state of a system over time can be captured. This, however, raises the question of whether these properties are preserved under refinement. Refinement is observation preserving and the state of a specified system is regarded as internal and, hence, non-observable. In this paper, we investigate this issue by addressing the following questions. Given that a Z specification A is refined by a Z specification C, and that P is a temporal logic property which holds for A, what temporal logic property Q can we deduce holds for C? Furthermore, under what circumstances does the property Q preserve the intended meaning of the property P? The paper answers these questions for LTL, but the approach could also be applied to other temporal logics over states such as CTL and the mgr-calculus.
Resumo:
A non-blocking program is one that uses non-blocking primitives, such as load-linked/store-conditional and compare-and-swap, for synchronisation instead of locks so that no process is ever blocked. According to their progress properties, non-blocking programs may be classified as wait-free, lock-free or obstruction-free. However, a precise description of these properties does not exist and it is not unusual to find a definition that is ambiguous or even incorrect. We present a formal definition of the progress properties so that any confusion is removed. The formalisation also allows one to prove the widely believed presumption that wait-freedom is a special case of lock-freedom, which in turn is a special case of obstruction-freedom.
Resumo:
In this paper we extend the conventional framework of program refinement down to the assembler level. We describe an extension to the Refinement Calculus that supports the refinement of programs in the Guarded Command Language to programs in .NET assembler. This is illustrated by a small example.
Resumo:
Previous work on formally modelling and analysing program compilation has shown the need for a simple and expressive semantics for assembler level programs. Assembler programs contain unstructured jumps and previous formalisms have modelled these by using continuations, or by embedding the program in an explicit emulator. We propose a simpler approach, which uses techniques from compiler theory in a formal setting. This approach is based on an interpretation of programs as collections of program paths, each of which has a weakest liberal precondition semantics. We then demonstrate, by example, how we can use this formalism to justify the compilation of block-structured high-level language programs into assembler.