63 resultados para Intravenous Infusions
em University of Queensland eSpace - Australia
Resumo:
Aims Previous isobolographic analysis revealed that coadministration of morphine and oxycodone produces synergistic antinociception in laboratory rodents. As both opioids can produce ventilatory depression, this study was designed to determine whether their ventilatory effects were synergistic when coadministered to healthy human subjects. Methods A placebo-controlled, randomized, crossover study was performed in 12 male volunteers. Ventilatory responses to hypoxaemia and hypercapnia were determined from 1-h intravenous infusions of saline ('placebo'), 15 mg morphine sulphate (M), 15 mg oxycodone hydrochloride (O), and their combination in the dose ratios of 1 : 2, 1 : 1, 2 : 1. Drug and metabolite concentrations in serial peripheral venous blood samples were measured by high-performance liquid chromatography-MS/MS. Results 'Placebo' treatment was without significant ventilatory effects. There were no systematic differences between active drug treatments on either the slopes or intercepts of the hypoxaemic and hypercapnia ventilation responses. During drug treatment, the mean minute ventilation at PETCO2 = 55 mmHg (V-E55) decreased to 74% of the subjects' before treatment values (95% confidence interval 62, 87), 68% (57, 80), 69% (59, 79), 68% (63, 73), and 61% (52, 69) for M15, M10/O5, M7.5/O7.5, M5/O10 and O15, respectively. Recovery was more prolonged with increasing oxycodone doses, corresponding to its greater potency and lower clearance compared with morphine. Conclusions Although adverse ventilatory effects of these drugs were found as expected, no unexpected or disproportionate effects of any of the morphine and oxycodone treatments were found that might impede their use in combination for pain management.
Resumo:
Aim To develop an appropriate dosing strategy for continuous intravenous infusions (CII) of enoxaparin by minimizing the percentage of steady-state anti-Xa concentration (C-ss) outside the therapeutic range of 0.5-1.2 IU ml(-1). Methods A nonlinear mixed effects model was developed with NONMEM (R) for 48 adult patients who received CII of enoxaparin with infusion durations that ranged from 8 to 894 h at rates between 100 and 1600 IU h(-1). Three hundred and sixty-three anti-Xa concentration measurements were available from patients who received CII. These were combined with 309 anti-Xa concentrations from 35 patients who received subcutaneous enoxaparin. The effects of age, body size, height, sex, creatinine clearance (CrCL) and patient location [intensive care unit (ICU) or general medical unit] on pharmacokinetic (PK) parameters were evaluated. Monte Carlo simulations were used to (i) evaluate covariate effects on C-ss and (ii) compare the impact of different infusion rates on predicted C-ss. The best dose was selected based on the highest probability that the C-ss achieved would lie within the therapeutic range. Results A two-compartment linear model with additive and proportional residual error for general medical unit patients and only a proportional error for patients in ICU provided the best description of the data. Both CrCL and weight were found to affect significantly clearance and volume of distribution of the central compartment, respectively. Simulations suggested that the best doses for patients in the ICU setting were 50 IU kg(-1) per 12 h (4.2 IU kg(-1) h(-1)) if CrCL < 30 ml min(-1); 60 IU kg(-1) per 12 h (5.0 IU kg(-1) h(-1)) if CrCL was 30-50 ml min(-1); and 70 IU kg(-1) per 12 h (5.8 IU kg(-1) h(-1)) if CrCL > 50 ml min(-1). The best doses for patients in the general medical unit were 60 IU kg(-1) per 12 h (5.0 IU kg(-1) h(-1)) if CrCL < 30 ml min(-1); 70 IU kg(-1) per 12 h (5.8 IU kg(-1) h(-1)) if CrCL was 30-50 ml min(-1); and 100 IU kg(-1) per 12 h (8.3 IU kg(-1) h(-1)) if CrCL > 50 ml min(-1). These best doses were selected based on providing the lowest equal probability of either being above or below the therapeutic range and the highest probability that the C-ss achieved would lie within the therapeutic range. Conclusion The dose of enoxaparin should be individualized to the patients' renal function and weight. There is some evidence to support slightly lower doses of CII enoxaparin in patients in the ICU setting.
Resumo:
Intermittent claudication (IC) is leg muscle pain, cramping and fatigue brought on by exercise and is the primary symptom of peripheral arterial disease. The goals of pharmacotherapy for IC are to increase the walking capacity/quality of life and to decrease rates of amputation. In 1988, pentoxifylline was the only drug that had reasonable supportive clinical trial evidence for being beneficial in IC. Since then a number of drugs have shown benefit or potential in IC. Cilostazol, a specific inhibitor of phosphodiesterase 3 and activator of lipoprotein lipase, clearly increases pain-free and absolute walking distances in claudicants. However, cilostazol does cause minor side effects including headache, diarrhoea, loose stools and flatulence. Naftidrofuryl, a serotonin (5-HT2) receptor antagonist and antiplatelet drug, is beneficial in claudicants. Inhibitors of platelet aggregation (including nitric oxide from L-arginine or glyceryl trinitrate) and anticoagulants (low molecular weight heparin, defibrotide) probably have both short and long-term benefits in IC. In addition, intravenous infusions of prostaglandins (PGs) PGE1 and PGI2 have an established role in severe peripheral arterial disease and the recent introduction of longer lasting and/or oral forms of the PGs makes them more likely to be useful in the IC associated with less severe forms of the disease. There are some exciting new approaches to the treatment of IC, including propionyl-L-carnitine and basic fibroblast growth factor (bFGF).
Resumo:
The platelet inhibitory effects of the nitric oxide (NO) donor drug MAHMA NONOate ((Z-1-{N-methyl-N-[6-(N-methylammoniohexyl)amino] diazen-1-ium-1,2-diolate) were examined in anaesthetised rats and compared with those of S-nitrosoglutathione (GSNO; an S-nitrosothiol). Bolus administration of the aggregating agent ADP dose-dependently reduced the number of circulating free platelets. Intravenous infusions of MAHMA NONOate (3-30 nmol/kg/min) dose-dependently inhibited the effect of 0.3 mumol/kg ADP. MAHMA NONOate was approximately 10-fold more potent than GSNO. MAHMA NONOate (0.3-10 nmol/kg/min) also reduced systemic artery pressure and was again 10-fold more potent than GSNO. Thus MAHMA NONOate has both platelet inhibitory and vasodepressor effects in vivo. The dose ranges for these two effects overlapped, although blood pressure was affected at slightly lower doses. The platelet inhibitory effects compared favourably with those of GSNO, even though NONOates generate free radical NO which, in theory, could have been scavenged by haemoglobin. Therefore platelet inhibition may be a useful therapeutic property of NONOates. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Objectives: The aim of this study was to investigate the temperature profile of home intravenous (iv) antibiotic reservoirs and the stability of 16 megaunits of benzylpenicillin sodium in 120 mL of sodium chloride 0.9% at constant and variable temperatures. Methods: A Tinytag computerized thermometer recorded temperatures every minute in the home iv antibiotic reservoir pouches of nine patients over a 24 h period. Similar bags containing benzylpenicillin sodium (16 megaunits) were maintained either at a constant 36degreesC, 26degreesC or 21-22degreesC or were worn in a pouch by five healthy volunteers for a 24 h period. Other bags were stored at 3-5degreesC for 10 days. The bags were sampled at timed intervals and benzylpenicillin concentrations assayed by HPLC. Results: Median temperatures recorded in the infusion bags worn by the nine patients were in the range 16.7-34.1degreesC. For infusion bags maintained at 36degreesC, 26degreesC and 21-22degreesC, the concentrations of benzylpenicillin dropped below 90% of the initial concentration at a mean time of 5 h 18 min, 12 h 54 min and 13 h 20 min, respectively, whereas for bags worn by the healthy volunteers the mean time for 10% loss of benzylpenicillin was 9 h 20 min. In contrast, at 3-5degreesC, concentrations of benzylpenicillin only dropped below 90% of the initial concentration at 8 days. Conclusions: Significant temperature-dependent degradation of benzylpenicillin occurs during continuous home iv antibiotic programme infusions, which could result in loss of efficacy.
Resumo:
Background: Intravenous (IV) fluid administration is an integral component of clinical care. Errors in administration can cause detrimental patient outcomes and increase healthcare costs, although little is known about medication administration errors associated with continuous IV infusions. Objectives: ( 1) To ascertain the prevalence of medication administration errors for continuous IV infusions and identify the variables that caused them. ( 2) To quantify the probability of errors by fitting a logistic regression model to the data. Methods: A prospective study was conducted on three surgical wards at a teaching hospital in Australia. All study participants received continuous infusions of IV fluids. Parenteral nutrition and non-electrolyte containing intermittent drug infusions ( such as antibiotics) were excluded. Medication administration errors and contributing variables were documented using a direct observational approach. Results: Six hundred and eighty seven observations were made, with 124 (18.0%) having at least one medication administration error. The most common error observed was wrong administration rate. The median deviation from the prescribed rate was 247 ml/h (interquartile range 275 to + 33.8 ml/ h). Errors were more likely to occur if an IV infusion control device was not used and as the duration of the infusion increased. Conclusions: Administration errors involving continuous IV infusions occur frequently. They could be reduced by more common use of IV infusion control devices and regular checking of administration rates.
Resumo:
Although morphine-6-glucuronide (M6G) has been shown to be analgesically active, the relative involvement of spinal and supraspinal structures in mediating M6G's pain-relieving effects following central and systemic administration to rats is unclear. As the tail flick and hotplate latency tests are reported to quantify antinociception mediated primarily by spinal and supraspinal mechanisms respectively, these methods were used to determine the comparative apparent levels of antinociception (expressed as percentage maximum possible effect, % MPE) achieved after M6G or morphine administration. Following i.v. or i.p. M6G (1.9-5.4 mu mol) dosing or i.p. morphine (10 mu mol) dosing, high levels of antinociception (>50% MPE) were achieved using the tail flick test whereas base-line levels of antinociception were observed 30 sec later in the same rats using the hotplate test. By contrast, antinociception evoked by i.v. morphine (10 mu mol) exceeded 50% MPE using both the hotplate and tail flick tests although the apparent potency was approximately 2.5 times greater using the tail flick test. After i.c.v. dosing, M6G (0.22-3.3 nmol) was significantly (P < .05) more potent when assessed using the tail flick compared with the hotplate test. Taken together, these data strongly indicate that following central and systemic administration, M6G's antinociceptive effects are mediated primarily by spinal structures whereas both spinal and supraspinal mechanisms contribute to systemic morphine's antinociceptive effects.
Resumo:
Chloramphenicol, an in vitro inhibitor of the glucuronidation of morphine to its putative antianalgesic metabolite, morphine-3-glucuronide (M3G), was coadministered with morphine in adult male Sprague-Dawley rats to determine whether it inhibited the in vivo metabolism of morphine to M3G, thereby enhancing morphine antinociception and/or delaying the development of antinociceptive tolerance. Parenteral chloramphenicol was given acutely (3-h studies) or chronically (48-h studies). Morphine was administered by the i.v. or i.c.v. route. Control rats received chloramphenicol and/or vehicle. Antinociception was quantified using the hotplate latency test. Coadministration of chloramphenicol with i.v. but not i.cv. morphine increased the extent and duration of morphine antinociception by approximate to 5.5-fold relative to rats that received i.v. morphine alone. Thus, the mechanism through which chloramphenicol enhances i.v. morphine antinociception in the rat does not directly involve supraspinal opioid receptors. Acutely, parenteral coadministration of chloramphenicol and morphine resulted in an approximate to 75% increase in the mean area under the serum morphine concentration-time curve but for chronic dosing there was no significant change in this curve, indicating that factors other than morphine concentrations contribute significantly to antinociception. Antinociceptive tolerance to morphine developed more slowly in rats coadministered chloramphenicol, consistent with our proposal that in vivo inhibition of M3G formation would result in increased antinociception and delayed development of tolerance. However, our data also indicate that chloramphenicol inhibited the biliary secretion of M3G. Whether chloramphenicol altered the passage of M3G and morphine across the blood-brain barrier remains to be investigated.
Resumo:
Intermittent low-dose heparinised saline flushes were found to be efficacious for maintaining patency of indwelling peripheral and central intravenous catheters in diabetic dogs. The catheters were flushed with 1 mL of 1 U/mL heparinised saline every two hours immediately following blood sample collection, or every 12 hours when not being used for sampling. Central catheters were flushed with saline solution first to clear the line before instillation of the heparinised saline. Patency of 54/57 (95%) of the peripheral catheters and 30/32 (94%) of the central catheters was achieved for up to 36 hours and five days, respectively. No phlebitis, or local or systemic infections were observed and, in each case, catheter failure was attributable to obstruction or extravasation. It is unlikely that there will be any contraindications to this flushing technique and its introduction may improve intravenous catheter survival and reduce catheter-associated complications in hospitalised dogs.
Resumo:
The prevalence of neoplasia in birds is generally low; however, in some species of companion and aviary birds, the incidence is high and neoplasia is a common cause of death. Surgical excision or limb amputation has been performed as the therapeutic plan. Chemotherapy in the treatment of avian neoplasia is largely empirical and poorly documented. For example, cisplatin has been used intralesionally in macaws (Ara species) with limited clinical success. Eight sulphur-crested cockatoos (Cacatua galerita), under general isoflurane anesthesia, were infused intravenously with cisplatin at 6.4 or 1.0 mg/kg over 1 hour and hydrated with lactated Ringer's solution for 1 hour before and 2 hours after cisplatin infusion. Birds were euthanatized 96 hours after infusion, except for 2 birds given the low cisplatin dose, which were euthanatized on day 35 after dosing. All birds tolerated the study procedure while under anesthesia. Blood pressure, heart rate, and respiratory rate did not change significantly. In the low-dose group, the mean cloacal temperature decreased significantly during the infusion period (P < .001) and then rose progressively to preinfusion values by 24 hours. Also in this group, the mean body weight tended to increase during the infusion period before significantly decreasing (P < .05) by 5% at 96 hours after dosing. At 24 hours after dosing, all birds were bright and eating. However, intermittent regurgitation and fecal changes (moist, dark green feces and yellow urates) occurred in 3 of 8 birds, especially those given the high dose. By 72 hours after dosing, droppings in the low-dose group were normal in appearance. One bird in the high-dose group died by 94 hours after dosing. Myelosuppression was not observed in any bird and at necropsy, no evidence of cisplatin toxicity was found except in 1 bird given the high cisplatin dose. On histology, this bird showed nephrotoxicity, and its serum uric acid levels and mean estimated white blood cell count increased significantly by 24 hours after dosing. This paper reports for the first time the effect of systemic cisplatin administration in birds and provides veterinarians data for formulating efficacious and safe protocols for platinum-containing compounds when treating neoplasia in parrots and other companion birds.
Resumo:
In cattle, a neurological lesion similar to that produced in sheep and goats by Clostridium perfringens type D enterotoxaemia has been reported. However, no causal relationship has been established between this disease and the lesion in cattle. The effects of single and multiple intravenous injections of epsilon toxin in three calves aged 6 months were studied. A further calf was inoculated intravenously with saline solution and used as a control. Epsilon toxin invariably produced neurological signs within 2-60 min of the end of the injection process. Clinical signs consisted of loss of consciousness, recumbency, convulsions, paddling, opisthotonus, hyperaesthesia and dyspnoea. Gross changes consisted of severe acute pulmonary oedema, which was particularly marked in the interlobular septa. The histological lesions consisted of intra-alveolar and interstitial oedema of the lung and variable degrees of perivascular proteinaceous oedema in the internal capsule, thalamus and cerebellar white matter. No clinical or post-mortem changes were observed in the control calf. These results show that calves are susceptible to the intravenous injection of epsilon toxin, and that they can show at least some of the histological lesions produced in sheep and goats by this toxin. (C) 2002 Harcourt Publishers Ltd.