14 resultados para Intraplate seismicity
em University of Queensland eSpace - Australia
Resumo:
To foster ongoing international cooperation beyond ACES (APEC Cooperation for Earthquake Simulation) on the simulation of solid earth phenomena, agreement was reached to work towards establishment of a frontier international research institute for simulating the solid earth: iSERVO = International Solid Earth Research Virtual Observatory institute (http://www.iservo.edu.au). This paper outlines a key Australian contribution towards the iSERVO institute seed project, this is the construction of: (1) a typical intraplate fault system model using practical fault system data of South Australia (i.e., SA interacting fault model), which includes data management and editing, geometrical modeling and mesh generation; and (2) a finite-element based software tool, which is built on our long-term and ongoing effort to develop the R-minimum strategy based finite-element computational algorithm and software tool for modelling three-dimensional nonlinear frictional contact behavior between multiple deformable bodies with the arbitrarily-shaped contact element strategy. A numerical simulation of the SA fault system is carried out using this software tool to demonstrate its capability and our efforts towards seeding the iSERVO Institute.
Resumo:
The recurrence interval statistics for regional seismicity follows a universal distribution function, independent of the tectonic setting or average rate of activity (Corral, 2004). The universal function is a modified gamma distribution with power-law scaling of recurrence intervals shorter than the average rate of activity and exponential decay for larger intervals. We employ the method of Corral (2004) to examine the recurrence statistics of a range of cellular automaton earthquake models. The majority of models has an exponential distribution of recurrence intervals, the same as that of a Poisson process. One model, the Olami-Feder-Christensen automaton, has recurrence statistics consistent with regional seismicity for a certain range of the conservation parameter of that model. For conservation parameters in this range, the event size statistics are also consistent with regional seismicity. Models whose dynamics are dominated by characteristic earthquakes do not appear to display universality of recurrence statistics.
Resumo:
The occurrence of rockbursts was quite common during active mining periods in the Champion reef mines of Kolar gold fields, India. Among the major rockbursts, the ‘area-rockbursts’ were unique both in regard to their spatio-temporal distribution and the extent of damage caused to the mine workings. A detailed study of the spatial clustering of 3 major area-rockbursts (ARB) was carried out using a multi-fractal technique involving generalized correlation integral functions. The spatial distribution analysis of all 3 area-rockbursts showed that they are heterogeneous. The degree of heterogeneity (D2 – D∞) in the cases of ARB-I, II and III were found to be 0.52, 0.37 and 0.41 respectively. These differences in fractal structure indicate that the ARBs of the present study were fully controlled by different heterogeneous stress fields associated with different mining and geological conditions. The present study clearly showed the advantages of the application of multi-fractals to seismic data and to characterise, analyse and examine the area-rockbursts and their causative factors in the Kolar gold mines.
Resumo:
Statistical tests of Load-Unload Response Ratio (LURR) signals are carried in order to verify statistical robustness of the previous studies using the Lattice Solid Model (MORA et al., 2002b). In each case 24 groups of samples with the same macroscopic parameters (tidal perturbation amplitude A, period T and tectonic loading rate k) but different particle arrangements are employed. Results of uni-axial compression experiments show that before the normalized time of catastrophic failure, the ensemble average LURR value rises significantly, in agreement with the observations of high LURR prior to the large earthquakes. In shearing tests, two parameters are found to control the correlation between earthquake occurrence and tidal stress. One is, A/(kT) controlling the phase shift between the peak seismicity rate and the peak amplitude of the perturbation stress. With an increase of this parameter, the phase shift is found to decrease. Another parameter, AT/k, controls the height of the probability density function (Pdf) of modeled seismicity. As this parameter increases, the Pdf becomes sharper and narrower, indicating a strong triggering. Statistical studies of LURR signals in shearing tests also suggest that except in strong triggering cases, where LURR cannot be calculated due to poor data in unloading cycles, the larger events are more likely to occur in higher LURR periods than the smaller ones, supporting the LURR hypothesis.
Resumo:
The Accelerating Moment Release (AMR) preceding earthquakes with magnitude above 5 in Australia that occurred during the last 20 years was analyzed to test the Critical Point Hypothesis. Twelve earthquakes in the catalog were chosen based on a criterion for the number of nearby events. Results show that seven sequences with numerous events recorded leading up to the main earthquake exhibited accelerating moment release. Two occurred near in time and space to other earthquakes preceded by AM R. The remaining three sequences had very few events in the catalog so the lack of AMR detected in the analysis may be related to catalog incompleteness. Spatio-temporal scanning of AMR parameters shows that 80% of the areas in which AMR occurred experienced large events. In areas of similar background seismicity with no large events, 10 out of 12 cases exhibit no AMR, and two others are false alarms where AMR was observed but no large event followed. The relationship between AMR and Load-Unload Response Ratio (LURR) was studied. Both methods predict similar critical region sizes, however, the critical point time using AMR is slightly earlier than the time of the critical point LURR anomaly.
Resumo:
We examine the event statistics obtained from two differing simplified models for earthquake faults. The first model is a reproduction of the Block-Slider model of Carlson et al. (1991), a model often employed in seismicity studies. The second model is an elastodynamic fault model based upon the Lattice Solid Model (LSM) of Mora and Place (1994). We performed simulations in which the fault length was varied in each model and generated synthetic catalogs of event sizes and times. From these catalogs, we constructed interval event size distributions and inter-event time distributions. The larger, localised events in the Block-Slider model displayed the same scaling behaviour as events in the LSM however the distribution of inter-event times was markedly different. The analysis of both event size and inter-event time statistics is an effective method for comparative studies of differing simplified models for earthquake faults.
Resumo:
A statistical fractal automaton model is described which displays two modes of dynamical behaviour. The first mode, termed recurrent criticality, is characterised by quasi-periodic, characteristic events that are preceded by accelerating precursory activity. The second mode is more reminiscent of SOC automata in which large events are not preceded by an acceleration in activity. Extending upon previous studies of statistical fractal automata, a redistribution law is introduced which incorporates two model parameters: a dissipation factor and a stress transfer ratio. Results from a parameter space investigation indicate that a straight line through parameter space marks a transition from recurrent criticality to unpredictable dynamics. Recurrent criticality only occurs for models within one corner of the parameter space. The location of the transition displays a simple dependence upon the fractal correlation dimension of the cell strength distribution. Analysis of stress field evolution indicates that recurrent criticality occurs in models with significant long-range stress correlations. A constant rate of activity is associated with a decorrelated stress field.
Resumo:
We present new major element, trace element and Nd-isotope data for 30 alluvial sediments collected from 25 rivers in Queensland, E Australia. Samples were chosen to represent drainage from the region's most important lithologies, including Tertiary intraplate volcanic rocks, a Cretaceous igneous province (and sedimentary rocks derived thereof) as well as Proterozoic blocks. In most chemical and isotopic aspects, the alluvial sediments represent binary or ternary mixing relationships, with absolute abundances implied to reflect the proportion of lithologies in the catchments. When averaged, the studied sediments differ from other proxies of upper continental crust (UCC) mainly in their relative middle rare earth element enrichment (including an elevated Sm/Nd ratio), higher relative Eu abundance and higher Nb/Ta ratio. These features are inherited from eroded Tertiary intraplate basalts, which commonly form topographic highs in the studied region. Despite the high degree of weathering strong to excellent coherence between similarly incompatible elements is found for all samples. From this coherence, we suggest revisions of the following upper crustal element ratios: Y/Ho = 26.2, Yb/Tm = 6.37, Th/W = 7.14, Th/Tl = 24 and Zr/Hf = 36.9. Lithium, Rb, Cs and Be contents do not seem depleted relative to UCC, which may reflect paucity of K-feldspar in the eroded catchments. Nickel, Cr, Pb, Cu and Zn concentrations are elevated in polluted rivers surrounding the state capital. River sediments in the Proterozoic Georgetown Inlier are elevated in Pb, Cu and Zn but this could be a natural phenomenon reflecting abundant sulphide mineralisation in the area. Except for relative Sr concentrations, which broadly anticorrelate with mean annual rainfall in catchments, there is no obvious relationship between the extent of weathering and climate types, which range from and to tropical. The most likely explanation for this observation is that the weathering profiles in many catchments are several Myr old, established during the much wetter Miocene period. The studied sediment compositions (excluding those from the Proterozoic catchments) are used to propose a new trace element normalisation termed MUQ (MUd from Queensland), which serves as an alternative to UCC proxies derived from sedimentary rocks. Copyright (C) 2005 Elsevier Ltd
Resumo:
An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.
Resumo:
On a global scale basalts from mid-ocean ridges are strikingly more homogeneous than basalts from intraplate volcanism. The observed geochemical heterogeneity argues strongly for the existence of distinct reservoirs in the Earth's mantle. It is an unresolved problem of Geodynamics as to how these findings can be reconciled with large-scale convection. We review observational constraints, and investigate stirring properties of numerical models of mantle convection. Conditions in the early Earth may have supported layered convection with rapid stirring in the upper layers. Material that has been altered near the surface is transported downwards by small-scale convection. Thereby a layer of homogeneous depleted material develops above pristine mantle. As the mantle cools over Earth history, the effects leading to layering become reduced and models show the large-scale convection favoured for the Earth today. Laterally averaged, the upper mantle below the lithosphere is least affected by material that has experienced near-surface differentiation. The geochemical signature obtained during the previous episode of small-scale convection may be preserved there for the longest time. Additionally, stirring is less effective in the high viscosity layer of the central lower mantle [1, 2], supporting the survival of medium-scale heterogeneities there. These models are the first, using 3-d spherical geometry and mostly Earth-like parameters, to address the suggested change of convective style. Although the models are still far from reproducing our planet, we find that proposal might be helpful towards reconciling geochemical and geophysical constraints.