12 resultados para Intractable Likelihood
em University of Queensland eSpace - Australia
Resumo:
We present a novel method, called the transform likelihood ratio (TLR) method, for estimation of rare event probabilities with heavy-tailed distributions. Via a simple transformation ( change of variables) technique the TLR method reduces the original rare event probability estimation with heavy tail distributions to an equivalent one with light tail distributions. Once this transformation has been established we estimate the rare event probability via importance sampling, using the classical exponential change of measure or the standard likelihood ratio change of measure. In the latter case the importance sampling distribution is chosen from the same parametric family as the transformed distribution. We estimate the optimal parameter vector of the importance sampling distribution using the cross-entropy method. We prove the polynomial complexity of the TLR method for certain heavy-tailed models and demonstrate numerically its high efficiency for various heavy-tailed models previously thought to be intractable. We also show that the TLR method can be viewed as a universal tool in the sense that not only it provides a unified view for heavy-tailed simulation but also can be efficiently used in simulation with light-tailed distributions. We present extensive simulation results which support the efficiency of the TLR method.
Resumo:
In simultaneous analyses of multiple data partitions, the trees relevant when measuring support for a clade are the optimal tree, and the best tree lacking the clade (i.e., the most reasonable alternative). The parsimony-based method of partitioned branch support (PBS) forces each data set to arbitrate between the two relevant trees. This value is the amount each data set contributes to clade support in the combined analysis, and can be very different to support apparent in separate analyses. The approach used in PBS can also be employed in likelihood: a simultaneous analysis of all data retrieves the maximum likelihood tree, and the best tree without the clade of interest is also found. Each data set is fitted to the two trees and the log-likelihood difference calculated, giving partitioned likelihood support (PLS) for each data set. These calculations can be performed regardless of the complexity of the ML model adopted. The significance of PLS can be evaluated using a variety of resampling methods, such as the Kishino-Hasegawa test, the Shimodiara-Hasegawa test, or likelihood weights, although the appropriateness and assumptions of these tests remains debated.
Resumo:
In diagnosis and prognosis, we should avoid intuitive “guesstimates” and seek a validated numerical aid
Resumo:
In cell lifespan studies the exponential nature of cell survival curves is often interpreted as showing the rate of death is independent of the age of the cells within the population. Here we present an alternative model where cells that die are replaced and the age and lifespan of the population pool is monitored until a, steady state is reached. In our model newly generated individual cells are given a determined lifespan drawn from a number of known distributions including the lognormal, which is frequently found in nature. For lognormal lifespans the analytic steady-state survival curve obtained can be well-fit by a single or double exponential, depending on the mean and standard deviation. Thus, experimental evidence for exponential lifespans of one and/or two populations cannot be taken as definitive evidence for time and age independence of cell survival. A related model for a dividing population in steady state is also developed. We propose that the common adoption of age-independent, constant rates of change in biological modelling may be responsible for significant errors, both of interpretation and of mathematical deduction. We suggest that additional mathematical and experimental methods must be used to resolve the relationship between time and behavioural changes by cells that are predominantly unsynchronized.
Resumo:
We present a novel, maximum-likelihood (ML), lattice-decoding algorithm for noncoherent block detection of QAM signals. The computational complexity is polynomial in the block length; making it feasible for implementation compared with the exhaustive search ML detector. The algorithm works by enumerating the nearest neighbor regions for a plane defined by the received vector; in a conceptually similar manner to sphere decoding. Simulations show that the new algorithm significantly outperforms existing approaches