4 resultados para Intestine crypt

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater ( SW). Juvenile C. leucas captured in FW ( 3 mOsm l(-1) kg(-1)) were acclimated to SW ( 980 - 1,000 mOsm l(-1) kg(-1)) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l(-1) kg(-1). In SW, bull sharks had significantly higher plasma osmolarities ( 940 mOsm l(-1) kg(-1)) than FW-acclimated animals and were slightly hypoosmotic to the environment. Plasma Na+, Cl-, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/ K+-ATPase activity. Na+/ K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg(-1) protein h(-1) and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/ K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/ K+-ATPase activity was 5.6 +/- 0.8 and 9.2 +/- 0.6 mmol Pi mg(-1) protein h(-1), respectively. Na+/ K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4 +/- 1.1 and 3.3 +/- 1.1 Pi mg(-1) protein h(-1), respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of short-term fasting and prolonged fasting during aestivation on the morphology of the proximal small intestine and associated organs were investigated in the green-striped burrowing frog, Cyclorana alboguttata (Anura: Hylidae). Animals were fasted for 1 week while active or for 3-9 months during aestivation. Short-duration fasting (1 week) had little effect on the morphology of the small intestine, whilst prolonged fasting during aestivation induced marked enteropathy including reductions in intestinal mass, length and diameter, longitudinal fold height and tunica muscularis thickness. Enterocyte morphology was also affected markedly by prolonged fasting: enterocyte cross-sectional area and microvillous height were reduced during aestivation, intercellular spaces were visibly reduced and the prevalence of lymphocytes amongst enterocytes was increased. Mitochondria and nuclei were also affected by 9 months of aestivation with major disruptions to mitochondrial cristae and increased clumping of nuclear material and increased infolding of the nuclear envelope. The present study demonstrates that the intestine of an aestivating frog responds to prolonged food deprivation during aestivation by reducing in size, presumably to reduce the energy expenditure of the organ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper and iron metabolism intersect in mammals. Copper deficiency simultaneously leads to decreased iron levels in some tissues and iron deficiency anemia, whereas it results in iron overload in other tissues such as the intestine and liver. The copper requirement of the multicopper ferroxidases hephaestin and ceruloplasmin likely explains this link between copper and iron homeostasis in mammals. We investigated the effect of in vivo and in vitro copper deficiency on hephaestin (Heph) expression and activity. C57BL/6J mice were separated into 2 groups on the day of parturition. One group was fed a copper-deficient diet and another was fed a control diet for 6 wk. Copper-deficient mice had significantly lower hephaestin and ceruloplasmin (~50% of controls) ferroxidase activity. Liver hepcidin expression was significantly downregulated by copper deficiency (~60% of controls), and enterocyte mRNA and protein levels of ferroportin1 were increased to 2.5 and 10 times, respectively, relative to controls, by copper deficiency, indicating a systemic iron deficiency in the copper-deficient mice. Interestingly, hephaestin protein levels were significantly decreased to ~40% of control, suggesting that decreased enterocyte copper content leads to decreased hephaestin synthesis and/or stability. We also examined the effect of copper deficiency on hephaestin in vitro in the HT29 cell line and found dramatically decreased hephaestin synthesis and activity. Both in vivo and in vitro studies indicate that copper is required for the proper processing and/or stability of hephaestin.