8 resultados para Interaction lipide-peptide

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The C terminus is responsible for all of the agonist activity of C5a at human C5a receptors (C5aRs). In this report we have mapped the ligand binding site on the C5aR using a series of agonist and antagonist peptide mimics of the C terminus of C5a as well as receptors mutated at putative interaction sites ( Ile(116), Arg(175), Arg(206), Glu(199), Asp(282), and Val(286)). Agonist peptide 1 (Phe-Lys-Pro-D-cyclohexylalanine-cyclohexylalanine-D-Arg) can be converted to an antagonist by substituting the bulkier Trp for cyclohexylalanine at position 5 ( peptide 2). Conversely, mutation of C5aR transmembrane residue Ile(116) to the smaller Ala (I116A) makes the receptor respond to peptide 2 as an agonist (Gerber, B. O., Meng, E. C., Dotsch, V., Baranski, T. J., and Bourne, H. R. (2001) J. Biol. Chem. 276, 3394 - 3400). However, a potent cyclic hexapeptide antagonist, Phe-cyclo-[Orn-Pro-D-cyclohexylalanine-Trp-Arg] ( peptide 3), derived from peptide 2 and which binds to the same receptor site, remains a full antagonist at I116AC5aR. This suggests that although the residue at position 5 might bind near to Ile(116), the latter is not essential for either activation or antagonism. Arg(206) and Arg(175) both appear to interact with the C-terminal carboxylate of C5a agonist peptides, suggesting a dynamic binding mechanism that may be a part of a receptor activation switch. Asp(282) has been previously shown to interact with the side chain of the C-terminal Arg residue, and Glu(199) may also interact with this side chain in both C5a and peptide mimics. Using these interactions to orient NMR-derived ligand structures in the binding site of C5aR, a new model of the interaction between peptide antagonists and the C5aR is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal ion binding properties of the immunosuppressant drug cyclosporin A have been investigated. Complexation studies in acetonitrile solution using H-1 NMR and CD spectroscopy yielded 1:1 metal-peptide binding constants (log(10)K) for potassium(l), < 1, magnesium(II), 4.8 +/- 0.2. and calcium(II), 5.0 +/- 1.0. The interaction of copper(II) with cyclosporin A in methanol was investigated with UV/visible and electron paramagnetic resonance (EPR) spectroscopy. No complexation of copper(II) was observed in neutral solution. In the presence of base, monomeric copper(II) complexes were detected. These results support the possibility that cyclosporin A has ionophoric properties for biologically important essential metal ions. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of a mammalian cyclic antimicrobial peptide, rhesus theta defensin 1 (RTD-1) and its open chain analogue (oRTD-1), on the phase behaviour and structure of model membrane systems (dipalmitoyl phosphatidylcholine, DPPC and dipalmitoyl phosphatidylglycerol, DPPG) were studied. The increased selectivity of RTD-1 for anionic DPPG over zwitterionic DPPC was shown by differential scanning calorimetry. RTD-1, at a molar peptide-lipid ratio of 1:100, induced considerable changes in the phase behaviour of DPPG, but not of DPPC. The main transition temperature, T-m, Was unchanged, but additional phase transitions appeared above T-m. oRTD-1 induced similar effects. However, the effects were not observable below a peptide:lipid molar ratio of 1:50, which correlates with the weaker biological activity of oRTD-1. Small-and wide-angle X-ray scattering revealed for DPPG the appearance of additional structural features induced by RTP-1 above T-m, which were interpreted as correlated lamellar structures, with increased order of the fatty acyl side chains of the lipid. It is proposed that after initial electrostatic interaction of the cationic rim of the peptide with the anionic DPPG headgroups, leading to stabilized lipid-peptide clusters, the hydrophobic face of the peptide assists in its interaction with the fatty acyl side chains eventually leading to membrane disruption. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high-affinity ligand-binding form of unactivated steroid receptors exists as a multicomponent complex that includes heat shock protein (Hsp)90; one of the immunophilins cyclophilin 40 (CyP40), FKBP51, or FKBP52; and an additional p23 protein component. Assembly of this heterocomplex is mediated by Hsp70 in association with accessory chaperones Hsp40, Hip, and Hop. A conserved structural element incorporating a tetratricopeptide repeat (TPR) domain mediates the interaction of the immunophilins with Hsp90 by accommodating the C-terminal EEVD peptide of the chaperone through a network of electrostatic and hydrophobic interactions. TPR cochaperones recognize the EEVD structural motif common to both Hsp90 and Hsp70 through a highly conserved clamp domain. In the present study, we investigated in vitro the molecular interactions between CyP40 and FKBP52 and other stress-related components involved in steroid receptor assembly, namely Hsp70 and Hop. Using a binding protein-retention assay with CyP40 fused to glutathione S-transferase immobilized on glutathione-agarose, we have identified the constitutively expressed form of Hsp70, heat shock cognate (Hsc)70, as an additional target for CyP40. Deletion mapping studies showed the binding determinants to be similar to those for CyP40-Hsp90 interaction. Furthermore, a mutational analysis of CyP40 clamp domain residues confirmed the importance of this motif in CyP40-Hsc70 interaction. Additional residues thought to mediate binding specificity through hydrophobic interactions were also important for Hsc70 recognition. CyP40 was shown to have a preference for Hsp90 over Hsc70. Surprisingly, FKBP52 was unable to compete with CyP40 for Hsc70 binding, suggesting that FKBP52 discriminates between the TPR cochaperone-binding sites in Hsp90 and Hsp70. Hop, which contains multiple units of the TPR motif, was shown to be a direct competitor with CyP40 for Hsc70 binding. Similar to Hop, CyP40 was shown not to influence the adenosine triphosphatase activity of Hsc70. Our results suggest that CyP40 may have a modulating role in Hsc70 as well as Hsp90 cellular function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MHC class I molecules generally present peptides of 8-10 aa long, forming an extended coil in the HLA cleft. Although longer peptides can also bind to class I molecules, they tend to bulge from the cleft and it is not known whether the TCR repertoire has sufficient plasticity to recognize these determinants during the antiviral CTL response. In this study, we show that unrelated individuals infected with EBV generate a significant CTL response directed toward an HLA-B*3501-restricted, 11-mer epitope from the BZLF1 Ag. The 11-mer determinant adopts a highly bulged conformation with seven of the peptide side chains being solvent-exposed and available for TCR interaction. Such a complex potentially creates a structural challenge for TCR corecognition of both HLA-B*3501 and the peptide Ag. Surprisingly, unrelated B*3501 donors recognizing the 11-mer use identical or closely related alpha beta TCR sequences that share particular CDR3 motifs. Within the small number of dominant CTL clonotypes observed, each has discrete fine specificity for the exposed-side chain residues of the peptide. The data show that bulged viral peptides are indeed immunogenic but suggest that the highly constrained TCR repertoire reflects a limit to TCR diversity when responding to some unusual MHC peptide ligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendrimers are nonviral vectors that have attracted interest on account of a number of features. They are structurally versatile because their size, shape, and surface charge can be selectively altered. Here we examine the functions of a new family of composite dendrimers that were synthesized with lipidic amino acid cores. These dendrimers are bifunctional because they are characterized by positively charged (lysine) modules for interaction with nucleic acids and neutral lipidic moieties for membrane lipid-bilayer transit. We assessed their structure-function correlations by a combination of molecular and biophysical techniques. Our assessment revealed an unexpected pleitropy of functions subserved by these vectors that included plasmid and oligonucleotide delivery. We also generated a firefly luciferase cell line in which we could modulate luciferase activity by RNA interference. We found that these vectors could also mediate RNA suppression of luciferase expression by delivering double-stranded luciferase transcripts generated in vitro. The structural uniqueness of these lipidic peptide dendrimers coupled with their ease and specificity of assembly and the versatility in their choice of cargo, puts them in a new category of macromolecule carriers. These vectors, therefore, have potential applications as epigenetic modifiers of gene function. (C) 2004 Wiley-Liss, Inc. and the American Pharmacists Association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sec1p/Munc18 (SM) proteins are believed to play an integral role in vesicle transport through their interaction with SNAREs. Different SM proteins have been shown to interact with SNAREs via different mechanisms, leading to the conclusion that their function has diverged. To further explore this notion, in this study, we have examined the molecular interactions between Munc18c and its cognate SNAREs as these molecules are ubiquitously expressed in mammals and likely regulate a universal plasma membrane trafficking step. Thus, Munc18c binds to monomeric syntaxin4 and the N-terminal 29 amino acids of syntaxin4 are necessary for this interaction. We identified key residues in Munc18c and syntaxin4 that determine the N-terminal interaction and that are consistent with the N-terminal binding mode of yeast proteins Sly1p and Sed5p. In addition, Munc18c binds to the syntaxin4/SNAP23/VAMP2 SNARE complex. Pre-assembly of the syntaxin4/Munc18c dimer accelerates the formation of SNARE complex compared to assembly with syntaxin4 alone. These data suggest that Munc18c interacts with its cognate SNAREs in a manner that resembles the yeast proteins Sly1p and Sed5p rather than the mammalian neuronal proteins Munc18a and syntaxin1a. The Munc18c-SNARE interactions described here imply that Munc18c could play a positive regulatory role in SNARE assembly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin-like peptide 3 (INSL3), a member of the relaxin peptide family, is produced in testicular Leydig cells and ovarian thecal cells. Gene knock-out experiments have identified a key biological role in initiating testes descent during fetal development. Additionally, INSL3 has an important function in mediating male and female germ cell function. These actions are elicited via its recently identified receptor, LGR8, a member of the leucine-rich repeat-containing G-protein- coupled receptor family. To identify the structural features that are responsible for the interaction of INSL3 with its receptor, its solution structure was determined by NMR spectroscopy together with in vitro assays of a series of B-chain alanine-substituted analogs. Synthetic human INSL3 was found to adopt a characteristic relaxin/ insulin-like fold in solution but is a highly dynamic molecule. The four termini of this two-chain peptide are disordered, and additional conformational exchange is evident in the molecular core. Alanine-substituted analogs were used to identify the key residues of INSL3 that are responsible for the interaction with the ectodomain of LGR8. These include Arg(B16) and Val(B19), with His(B12) and Arg(B20) playing a secondary role, as evident from the synergistic effect on the activity in double and triple mutants involving these residues. Together, these amino acids combine with the previously identified critical residue, Trp(B27), to form the receptor binding surface. The current results provide clear direction for the design of novel specific agonists and antagonists of this receptor.