503 resultados para Intelligent agents (Computer software)
em University of Queensland eSpace - Australia
Resumo:
In this paper we describe a distributed object oriented logic programming language in which an object is a collection of threads deductively accessing and updating a shared logic program. The key features of the language, such as static and dynamic object methods and multiple inheritance, are illustrated through a series of small examples. We show how we can implement object servers, allowing remote spawning of objects, which we can use as staging posts for mobile agents. We give as an example an information gathering mobile agent that can be queried about the information it has so far gathered whilst it is gathering new information. Finally we define a class of co-operative reasoning agents that can do resource bounded inference for full first order predicate logic, handling multiple queries and information updates concurrently. We believe that the combination of the concurrent OO and the LP programming paradigms produces a powerful tool for quickly implementing rational multi-agent applications on the internet.
Resumo:
Virtual learning environments (VLEs) are computer-based online learning environments, which provide opportunities for online learners to learn at the time and location of their choosing, whilst allowing interactions and encounters with other online learners, as well as affording access to a wide range of resources. They have the capability of reaching learners in remote areas around the country or across country boundaries at very low cost. Personalized VLEs are those VLEs that provide a set of personalization functionalities, such as personalizing learning plans, learning materials, tests, and are capable of initializing the interaction with learners by providing advice, necessary instant messages, etc., to online learners. One of the major challenges involved in developing personalized VLEs is to achieve effective personalization functionalities, such as personalized content management, learner model, learner plan and adaptive instant interaction. Autonomous intelligent agents provide an important technology for accomplishing personalization in VLEs. A number of agents work collaboratively to enable personalization by recognizing an individual's eLeaming pace and reacting correspondingly. In this research, a personalization model has been developed that demonstrates dynamic eLearning processes; secondly, this study proposes an architecture for PVLE by using intelligent decision-making agents' autonomous, pre-active and proactive behaviors. A prototype system has been developed to demonstrate the implementation of this architecture. Furthemore, a field experiment has been conducted to investigate the performance of the prototype by comparing PVLE eLearning effectiveness with a non-personalized VLE. Data regarding participants' final exam scores were collected and analyzed. The results indicate that intelligent agent technology can be employed to achieve personalization in VLEs, and as a consequence to improve eLeaming effectiveness dramatically.
Resumo:
Agents make up an important part of game worlds, ranging from the characters and monsters that live in the world to the armies that the player controls. Despite their importance, agents in current games rarely display an awareness of their environment or react appropriately, which severely detracts from the believability of the game. Some games have included agents with a basic awareness of other agents, but they are still unaware of important game events or environmental conditions. This paper presents an agent design we have developed, which combines cellular automata for environmental modeling with influence maps for agent decision-making. The agents were implemented into a 3D game environment we have developed, the EmerGEnT system, and tuned through three experiments. The result is simple, flexible game agents that are able to respond to natural phenomena (e.g. rain or fire), while pursuing a goal.
Resumo:
In this tutorial paper we summarise the key features of the multi-threaded Qu-Prolog language for implementing multi-threaded communicating agent applications. Internal threads of an agent communicate using the shared dynamic database used as a generalisation of Linda tuple store. Threads in different agents, perhaps on different hosts, communicate using either a thread-to-thread store and forward communication system, or by a publish and subscribe mechanism in which messages are routed to their destinations based on content test subscriptions. We illustrate the features using an auction house application. This is fully distributed with multiple auctioneers and bidders which participate in simultaneous auctions. The application makes essential use of the three forms of inter-thread communication of Qu-Prolog. The agent bidding behaviour is specified graphically as a finite state automaton and its implementation is essentially the execution of its state transition function. The paper assumes familiarity with Prolog and the basic concepts of multi-agent systems.
Resumo:
Most widely-used computer software packages, such as word processors, spreadsheets and web browsers, incorporate comprehensive help systems, partly because the software is meant for those with little technical knowledge. This paper identifies four systematic philosophies or approaches to help system delivery, namely the documentation approach, based on written documents, either paper-based or online; the training approach, either offered before the user starts working on the software or on-the-job; intelligent help, that is online, context-sensitive help or that relying on software agents; and finally an approach based on minimalism, defined as providing help only when and where it is needed.
Resumo:
These are the full proceedings of the conference.