19 resultados para Insulin-resistance Syndrome

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE - To assess the concurrent validity of fasting indexes of insulin sensitivity and secretion in - obese prepubertal (Tanner stage 1) children and pubertal (Tanner stages 2-5) glucose tolerance test (FSIVGTT) as a criterion measure. RESEARCH DESIGN AND METHODS - Eighteen obese children and adolescents (11 girls and 7 boys, mean age 12.2 +/- 2.4 years, mean BMI 35.4 +/- 6.2 kg/m(2), mean BMI-SDS 3.5 +/- 0.5, 7 prepubertal and I I pubertal) participated in the study. All participants underwent an insulin-modified FSIVGTT on two occasions, and 15 repeated this test a third time (mean 12.9 and 12.0 weeks apart). S-i measured by the FSIVGTT was compared with homeostasis model assessment (HOMA) of insulin resistance (HOMA-IR), quantitative insulin-sensitivity check index (QUICKI), fasting glucose-to-insulin ratio (FGIR), and fasting insulin (estimates of insulin sensitivity derived from fasting samples). The acute insulin response (AIR) measured by the FSIVGTT was compared with HOMA of percent beta-cell function (HOMA-beta%), FGIR, and fasting insulin (estimates of insulin secretion derived from fasting samples). RESULTS - There was a significant negative correlation between HOMA-IR and S-i (r = -0.89, r = -0.90, and r = -0.81, P < 0.01) and a significant positive correlation between QUICKI and S-i (r = 0.89, r = 0.90, and r = 0.81, P < 0.01) at each time point. There was a significant positive correlation between FGIR and S-i (r = 0.91, r = 0.91, and r = 0.82, P < 0.01) and a significant negative correlation between fasting insulin and S-i (r = -90, r = -0.90, and r = -0.88, P < 0.01). HOMA-beta% was not as strongly correlated with AIR (r = 0.60, r = 0.54, and r = 0.61, P < 0.05). CONCLUSIONS - HOMA-IR, QUICKI, FGIR, and fasting insulin correlate strongly with S-i assessed by the FSIVGTT in obese children and adolescents. Correlations between HOMA-β% FGIR and fasting insulin, and AIR were not as strong. Indexes derived from fasting samples are a valid tool for assessing insulin sensitivity in prepubertal and pubertal obese children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Obese pts have subclinical myocardial dysfunction that may account for their risk of heart failure. We sought the contribution of insulin resistance (IR) to myocardial dysfunction in obesity. Methods. Asymptomatic obese subjects without known cardiac disease underwent clinical evaluation, homeostasis model assessment (HOMA score) as a measure of insulin sensitivity and echocardiographic assessment. After exclusion of DM, overt myocardial dysfunction or ischemia, subclinical myocardial function was assessed by myocardial systolic (Sm) and diastolic velocity (Em) in 79 pts. Association was sought between myocardial function with clinical and biochemical characteristics. Results HOMA score categorized 36 pts as non-IR (HOMA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of schizophrenia with olanzapine and other atypical antipsychotic agents is associated with insulin resistance and diabetes mellitus. The mechanism for this is not understood. Adiponectin is an insulin-sensitizing cytokine secreted by adipocytes. It is present in serum in multimers of varying size. Trimers and hexamers are referred to as low molecular weight (LMW) adiponectin. Larger multimers (12-, 18-, and 24-mers) have been designated high molecular weight (HMW) adiponectin and seem responsible for the insulin-sensitizing action of this adipokine. The aim of this study was to examine total adiponectin and LMW and HMW multimers in serum from patients with schizophrenia treated with either olanzapine (n = 9) or other typical antipsychotics (n = 9) and compare results with 16 healthy sex-, body mass index-, and age-matched controls. The effects of olanzapine on adiponectin protein expression and secretion in in vitro-differentiated primary human adipocytes were also examined. Patients receiving olanzapine had significantly lower total serum adiponectin as compared with those on conventional treatment and controls (5.23 +/- 1.53 ng/mL vs. 8.20 +/- 3.77 ng/mL and 8.78 +/- 3.8 ng/mL; P < 0.05 and P < 0.01, respectively). The HMW adiponectin was also reduced in patients on olanzapine as compared with the disease and healthy control groups (1.67 +/- 0.96 ng/mL vs. 3.87 +/- 2.69 ng/mL and 4.07 +/- 3.2 ng/mL; P < 0.05 for both). The LMW adiponectin was not different between patient groups (P = 0.15) but lower in patients on olanzapine as compared with controls (3.56 +/- 10.85 ng/mL vs. 4.70 +/- 1.4 ng/mL; P < 0.05). In vitro, short duration (up to 7 days) olanzapine exposure had no effect on total adiponectin expression or multimer composition of secreted protein. In summary, this study demonstrates a correlation between olanzapine treatment and reduced serum adiponectin, particularly HMW multimers. This may not be a direct effect of olanzapine on adipocyte expression or secretion of adiponectin. These observations provide insights into possible mechanisms for the association between olanzapine treatment and insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of a diabetic cardiomyopathy, independent of hypertension and coronary artery disease, is still controversial. This systematic review seeks to evaluate the evidence for the existence of this condition, to clarify the possible mechanisms responsible, and to consider possible therapeutic implications. The existence of a diabetic cardiomyopathy is supported by epidemiological findings showing the association of diabetes with heart failure; clinical studies confirming the association of diabetes with left ventricular dysfunction independent of hypertension, coronary artery disease, and other heart disease; and experimental evidence of myocardial structural and functional changes. The most important mechanisms of diabetic cardiomyopathy are metabolic disturbances (depletion of glucose transporter 4, increased free fatty acids, carnitine deficiency, changes in calcium homeostasis), myocardial fibrosis (association with increases in angiotensin II, IGF-I, and inflammatory cytokines), small vessel disease (microangiopathy, impaired coronary flow reserve, and endothelial dysfunction), cardiac autonomic neuropathy (denervation and alterations in myocardial catecholamine levels), and insulin resistance (hyperinsulinemia and reduced insulin sensitivity). This review presents evidence that diabetes is associated with a cardiomyopathy, independent of comorbid conditions, and that metabolic disturbances, myocardial fibrosis, small vessel disease, cardiac autonomic neuropathy, and insulin resistance may all contribute to the development of diabetic heart disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolic syndrome (MS) is associated with cardiovascular risk exceeding that expected from atherosclerotic risk factors, but the mechanism of this association is unclear. We sought to determine the effects of the MS on myocardial and vascular function and cardiorespiratory fitness in 393 subjects with significant risk factors but no cardiovascular disease and negative stress echocardiographic findings. Myocardial function was assessed by global strain rate, strain, and regional systolic velocity (s(m)) and diastolic velocity (e(m)) using tissue Doppler imaging. Arterial compliance was assessed using the pulse pressure method, involving simultaneous radial applanation tonometry and echocardiographic measurement of stroke volume. Exercise capacity was measured by expired gas analysis. Significant and incremental variations in left ventricular systolic (s(m), global strain, and strain rate) and diastolic (e(m)) function were found according to the number of components of MS (p <0.001). MS contributed to reduced systolic and diastolic function even in those without left ventricular hypertrophy (p <0.01). A similar dose-response association was present between the number of components of the MS and exercise capacity (p <0.001) and arterial compliance. The global strain rate and em were independent predictors of exercise capacity. In conclusion, subclinical left ventricular dysfunction corresponded to the degree of metabolic burden, and these myocardial changes were associated with reduced cardiorespiratory fitness.' Subjects with MS who also have subclinical myocardial abnormalities and reduced cardiorespiratory fitness may have a higher risk of cardiovascular disease events and heart failure. (C) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity and the metabolic syndrome have both reached pandemic proportions. Together they have the potential to impact on the incidence and severity of cardiovascular pathologies, with grave implications for worldwide health care systems. The metabolic syndrome is characterized by visceral obesity, insulin resistance, hypertension, chronic inflammation, and thrombotic disorders contributing to endothelial dysfunction and, subsequently, to accelerated atherosclerosis. Obesity is a key component in development of the metabolic syndrome and it is becoming increasingly clear that a central factor in this is the production by adipose cells of bioactive substances that directly influence insulin sensitivity and vascular injury. In this paper, we review advances in the understanding of biologically active molecules collectively referred to as adipokines and how dysregulated production of these factors in obese states mediates the pathogenesis of obesity associated metabolic syndrome.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives: To describe the glycaemic status (assessed by an oral glucose tolerance test (OGTT)) and associated comorbidities in a cohort of Australian children and adolescents at risk of insulin resistance and impaired glucose homeostasis (IGH). Methods: Twenty-one children and adolescents (three male, 18 female) (18 Caucasian, one Indigenous, two Asian) (20 obese, one lipodystrophy) referred to the Paediatric Endocrinology and Diabetes Clinic underwent a 2-h OGTT with plasma glucose and insulin measured at baseline, + 60 and + 120 min. If abnormal, the OGTT was repeated. Results: The mean (SD) age was 14.2 (1.6) years, BMI 38.8 (7.0) kg/m(2) and BMI-SDS 3.6 (0.6). Fourteen patients had fasting insulin levels >21 mU/L. Type 2 diabetes mellitus was diagnosed in one patient, impaired glucose tolerance (IGT) in four patients and impaired fasting glycaemia (IFG) in one patient. Despite no weight loss, only one patient had a persistently abnormal OGTT on repeat testing. Three patients with IGH were medicated with risperidone at the time of the initial OGTT. One patient who had persistent IGT had continued risperidone. The other two patients had initial OGTT results of IGT and diabetes mellitus type 2. They both ceased risperidone between tests and repeat OGTT showed normal glycaemic status. Conclusions: Use of fasting glucose alone may miss cases of IGH. Diagnosis of IGT should not be made on one test alone. Interpretation of glucose and insulin responses in young people is limited by lack of normative data. Larger studies are needed to generate Australian screening recommendations. Further assessment of the potential adverse effects of atypical antipsychotic medication on glucose homeostasis in this at-risk group is important.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The prevalence of fatty liver is rising in association with the global increase in obesity and type 2 diabetes. In the past, simple steatosis was regarded as benign, but the presence of another liver disease may provide a synergistic combination of steatosis, cellular adaptation, and oxidative damage that aggravates liver injury. In this review, a major focus is on the role of steatosis as a co-factor in chronic hepatitis C (HCV), where the mechanisms promoting fibrosis and the effect of weight reduction in minimizing liver injury have been most widely studied. Steatosis, obesity, and associated metabolic factors may also modulate the response to alcohol- and drug-induced liver disease and may be risk factors for the development of hepatocellular cancer. The pathogenesis of injury in obesity-related fatty liver disease involves a number of pathways, which are currently under investigation. Enhanced oxidative stress, increased susceptibility to apoptosis, and a dysregulated response to cellular injury have been implicated, and other components of the metabolic syndrome such as hyperinsulinernia and hyperglycemia are likely to have a role. Fibrosis also may be increased as a by-product of altered hepatocyte regeneration and activation of bipotential hepatic progenitor cells. In conclusion, active management of obesity and a reduction in steatosis may improve liver injury and decrease the progression of fibrosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of total body weight and 50% of energy expenditure and is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. Excessive caloric intake is sensed by the brain and induces beta-adrenergic receptor (beta-AR)- mediated adaptive thermogenesis. beta-AR null mice develop severe obesity on a high fat diet. However, the target gene(s), target tissues(s), and molecular mechanism involved remain obscure. We observed that 30 - 60 min of beta-AR agonist ( isoprenaline) treatment of C2C12 skeletal muscle cells strikingly activated (> 100-fold) the expression of the mRNA encoding the nuclear hormone receptor, Nur77. In contrast, the expression of other nuclear receptors that regulate lipid and carbohydrate metabolism was not induced. Stable transfection of Nur77-specific small interfering RNAs (siNur77) into skeletal muscle cells repressed endogenous Nur77 mRNA expression. Moreover, we observed attenuation of gene and protein expression associated with the regulation of energy expenditure and lipid homeostasis, for example AMP-activated protein kinase gamma 3, UCP3, CD36,adiponectin receptor 2, GLUT4, and caveolin-3. Attenuation of Nur77 expression resulted in decreased lipolysis. Finally, in concordance with the cell culture model, injection and electrotransfer of siNur77 into mouse tibialis cranialis muscle resulted in the repression of UCP3 mRNA expression. This study demonstrates regulatory cross-talk between the nuclear hormone receptor and beta-AR signaling pathways. Moreover, it suggests Nur77 modulates the expression of genes that are key regulators of skeletal muscle lipid and energy homeostasis. In conclusion, we speculate that Nur77 agonists would stimulate lipolysis and increase energy expenditure in skeletal muscle and suggest selective activators of Nur77 may have therapeutic utility in the treatment of obesity.