3 resultados para Insulating silica capillary tubes

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High pressure homogenisation (HPH) is a novel dairy processing tool, which has many effects on enzymes, microbes, fat globules and proteins in milk. The effects of HPH on milk are due to a combination of shear forces and frictional heating of the milk during processing; the relative importance of these different factors is unclear, and was the focus of this study. The effect of milk inlet temperature (in the range 10-50 degrees C) on residual plasmin, alkaline phosphatase, lactoperoxidase and lipase activities in raw whole bovine milk homogenised at 200 MPa was investigated. HPH caused significant heating of the milk; outlet temperature increased in a linear fashion (0(.)5887 degrees C/degrees C, R-2 =0-9994) with increasing inlet temperature. As milk was held for 20 s at the final temperature before cooling, samples of the same milk were heated isothermally in glass capillary tubes for the same time/temperature combinations. Inactivation profiles of alkaline phosphatase in milk were similar for isothermal heating or HPH, indicating that loss of enzyme activity was due to heating alone. Loss of plasmin and lactoperoxidase activity in HPH milk, however, was greater than that in heated milk. Large differences in residual lipase activities in milks subjected to heating or HPH were observed due to the significant increase in lipase activity in homogenised milk. Denaturation of beta-lactoglobulin was more extensive following HPH than the equivalent heat treatment. Inactivation of plasmin was correlated with increasing fat/serum interfacial area but was not correlated with denaturation of beta-lactoglobulin. Thus, while some effects of HPH on milk are due to thermal effects alone, many are induced by the combination of forces and heating to which the milk is exposed during HPH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study here the adsorption of hexane on nanoporous MCM-41 silica at 303, 313, and 323 K, for various pore diameters between 2.40 and 4.24 nm. Adsorption equilibria, measured thermogravimetrically, show that all the isotherms, that are somewhat akin to those of type V, exhibit remarkably sharp capillary adsorption phase transition steps and are reversible. The position of the phase transition step gradually shifts from low to high relative pressure with an increase in the temperature as well as the pore sizes. The isosteric heats of adsorption derived from the equilibrium information using the Clapeyron equation reveal a gradual decrease with increasing adsorbed amount because of the surface heterogeneity but approach a constant value near the phase transition. A decrease in the pore size results in an increase in the isosteric heat of adsorption because of the increased dispersion forces. A simple strategy, based on the Broekhoff and De Boer adsorption theory, successfully interprets the hexane adsorption isotherms for the different pore size MCM-41 samples. The parameters of an empirical expression, used to represent the potential of interaction between the adsorbate and adsorbent, are obtained by fitting the monolayer region prior to capillary condensation and the experimental phase transition simultaneously, for some pore sizes. Subsequently, the parameters are used to predict the adsorption isotherm on other pore size samples, which showed good agreement with experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new version of non-local density functional theory (NL-DFT) adapted to description of vapor adsorption isotherms on amorphous materials like non-porous silica. The novel feature of this approach is that it accounts for the roughness of adsorbent surface. The solid–fluid interaction is described in the same framework as in the case of fluid–fluid interactions, using the Weeks–Chandler–Andersen (WCA) scheme and the Carnahan–Starling (CS) equation for attractive and repulsive parts of the Helmholtz free energy, respectively. Application to nitrogen and argon adsorption isotherms on non-porous silica LiChrospher Si-1000 at their boiling points, recently published by Jaroniec and co-workers, has shown an excellent correlative ability of our approach over the complete range of pressures, which suggests that the surface roughness is mostly the reason for the observed behavior of adsorption isotherms. From the analysis of these data, we found that in the case of nitrogen adsorption short-range interactions between oxygen atoms on the silica surface and quadrupole of nitrogen molecules play an important role. The approach presented in this paper may be further used in quantitative analysis of adsorption and desorption isotherms in cylindrical pores such as MCM-41 and carbon nanotubes.