14 resultados para Insects - Biological control
em University of Queensland eSpace - Australia
Resumo:
Various factors can influence the population dynamics of phytophages post introduction, of which climate is fundamental. Here we present an approach, using a mechanistic modelling package (CLIMEX), that at least enables one to make predictions of likely dynamics based on climate alone. As biological control programs will have minimal funding for basic work (particularly on population dynamics), we show how predictions can be made using a species geographical distribution, relative abundance across its range, seasonal phenology and laboratory rearing data. Many of these data sets are more likely to be available than long-term population data, and some can be incorporated into the exploratory phase of a biocontrol program. Although models are likely to be more robust the more information is available, useful models can be developed using information on species distribution alone. The fitted model estimates a species average response to climate, and can be used to predict likely geographical distribution if introduced, where the agent is likely to be more abundant (i.e. good locations) and more importantly for interpretation of release success, the likely variation in abundance over time due to intra- and inter-year climate variability. The latter will be useful in predicting both the seasonal and long-term impacts of the potential biocontrol agent on the target weed. We believe this tool may not only aid in the agent selection process, but also in the design of release strategies, and for interpretation of post-introduction dynamics and impacts. More importantly we are making testable predictions. If biological control is to become more of a science making and testing such hypothesis will be a key component.
Resumo:
Selection of biocontrol agents that are adapted to the climates in areas of intended release demands a thorough analysis of the climates of the source and release sites. We present a case study that demonstrates how use of the CLIMEX software can improve decision making in relation to the identification of prospective areas for exploration for agents to control the woody weed, prickly acacia Acacia nilotica ssp. indica in the arid areas of north Queensland.
Resumo:
Biological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. (1999) Annu. Rev. Microbiol. 53,71-102]. We established Wolbachia-infected lines of the medfly Ceratitis capitata using the infected cherry fruit fly Rhagoletis cerasi as donor. Wolbachia induced complete CI in the novel host. Laboratory cage populations were completely suppressed by single releases of infected males, suggesting that Wolbachia-induced CI could be used as a novel environmentally friendly tool for the control of medfly populations. The results also encourage the introduction of Wolbachia into pest and vector species of economic and hygenic relevance to suppress or modify natural populations.
Resumo:
Ballooning is a form of aerial movement practiced by most miniature and some adult spiders. Very few studies have investigated the composition and rate of spider ballooning in Australian agroecosystems. Water traps were used to compare ballooning rates in irrigated soybean crops and nearby non-crop areas in southeast Queensland over two summer seasons. The highest ballooning rate (14.8 spiders/m(2) per day) was recorded in a soybean field, non-crop areas (7.0 spiders/m(2) per day) and a dry land mungbean field (6.8 spiders/m(2) per day) having similar rates. Spider ballooning in soybean increased throughout the season and showed three peaks and intervening troughs. A similar pattern in ballooning peaks was observed in non-crop areas however the numbers were lower. Peaks in ballooning activity where synchronised across habitat types and some spider groups. Composition of the ballooning fauna was different from that of the ground-dwelling fauna, some families being present in both. Ballooning is an important behaviour in terms of population dynamics for a number of spider groups in soybean and the implications for pest control are discussed. (C) 2004 Elsevier BN. All rights reserved.
Resumo:
Parthenium weed (Parthenium hysterophorus L.) is a new and potentially major weed in Pakistan. This weed, originating from central America, is now a major weed in many regions of the world including Eastern Africa, India, parts of South East Asia and Australia. Presumably its recent arrival in Pakistan has been due to its movement from India, but this has yet to be established. In Australia it has been present for about 50 years, in which time it has spread from isolated infestations to establish core populations in central Queensland with scattered and isolated plants occurring south into New South Wales and north-west into the Northern Territory. Its spread in Pakistan is likely to be much more rapid, but lessons learnt in Australia will be of great value for weed managers in Pakistan. This annual herb has the potential to spread to all medium rainfall rangeland, dairy and summer cropping areas in Pakistan. In Australia its main effect is upon livestock production, but it is also causing health concerns in regional communities. However, in India it has also had a significant impact in cropping systems. To help coordinate actions on its management in Australia, a National Weeds Program has created a Parthenium Weed Management Group (PWMG) and under this group a Parthenium Weed Research Group (PWRG) has been formed. Funding coming from this national program and other sources has supported the PWRG to undertake a collaborative and technology exchange research program in two main areas: 1) biology and ecology and 2) management; while the PWMG has focused on community awareness and the production of various extension and management packages. Research in the area of biology and ecology has included studies on the evaluation of competitive plants to displace parthenium weed, the use of process-based simulation models to monitor and predict future spread and abundance under present and future climate conditions, the effect of the weed on human health and the ecology of its seed bank. Management research has focussed on the development of biological control approaches using plant-feeding insects and pathogens. The effectiveness of biological control is also being monitored through long term studies on seed bank size and dynamics. The use of fire as another potential management tool is also being evaluated. In addition to this important research, an effort has also been made to spread the most important findings and management outcomes to the wider community through an extension and education program driven by the PWMG. These developments within Australia, in parthenium weed management, will be of great help to P