22 resultados para Insect resistance management

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Resistance in insect pests against the endotoxin of Bacillus thuringiensis (Berliner) (Bt) is a major threat to the usefulness of this biopesticide, both used as traditional formulations and in transgenic crops. A crucial requirement for the development of successful resistance management strategies is a molecular understanding of the nature and inheritance of resistance mechanisms. This information can be used to design management strategies that will delay or counteract Bt resistance. The best known Bt resistance mechanism is inactivation of brush border membrane receptors. This type of resistance has a largely recessive mode of inheritance, which has enabled the design of resistance management approaches involving high dose and refuge strategies. Recent observations suggest that other resistance mechanisms are possible, including a mechanism that sequesters the toxin in the gut lumen through inducible immune reactions. The elevated immune status associated with tolerance to the toxin can be transmitted to subsequent generations by a maternal effect, which has implications for resistance management in the field. The high dose/refuge strategy may not be appropriate for the management of these alternative resistance mechanisms and other strategies have to be developed if inducible dominant resistance or tolerance mechanisms occur frequently in the field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study surveys the population genetic structure of Childers canegrub, Antitrogus parvulus, to elucidate its population dynamics and gene flow. Antitrogus parvulus is a pest of sugarcane in the Bundaberg region and this knowledge can be used to optimise integrated pest management practices. Here, base-pair differences in the cytochrome oxidase II gene (COII) were used to characterise haplotypic diversity, infer levels of gene flow, and phylogenetic relationships of alleles and their phylogeographical structure. There were 28 unique haplotypes among the 70 sequenced individuals from the seven locations. All three variance components (among regions, among populations, within populations) are highly significant, with highest genetic diversity among regions and lowest among populations within regions. A positive correlation between migration rates and geographical distance and significant phylogeographical structure between four main geographical regions. The main implication of these findings for pest management is that if a grower can eliminate an existing infestation within a field, then reinvasion will be slow and further outbreaks within that field are unlikely to occur. The low dispersal ability of females also means that any resistance to insecticides that develops is likely to remain localised, but will rapidly become dominant within the affected population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of Bacillus thuringiensis (Bt) endotoxins to control insect vectors of human diseases and agricultural pests is threatened by the possible evolution of resistance in major pest species. In addition to high levels of resistance produced by receptor insensitivity (5, 16, 17), several cases of tolerance to low to medium levels of toxin have been reported in laboratory colonies of lepidopteran species (3, 18). Because the molecular basis of some of these cases of tolerance to the toxin are not known, we explored alternative mechanisms. Here, we present evidence that tolerance to a Bt formulation in a laboratory colony of the flour moth Ephestia kuehniella can be induced by preexposure to a low concentration of the Bt formulation and that the tolerance correlates with an elevated immune response. The data also indicate that both immune induction and Bt tolerance can be transmitted to offspring by a maternal effect and that their magnitudes are determined by more than one gene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both large and small scale migrations of Helicoverpa armigera Hübner in Australia were investigated using AMOVA analysis and genetic assignment tests. Five microsatellite loci were screened across 3142 individuals from 16 localities in eight major cotton and grain growing regions within Australia, over a 38-month period (November 1999 to January 2003). From November 1999 to March 2001 relatively low levels of migration were characterized between growing regions. Substantially higher than average gene-flow rates and limited differentiation between cropping regions characterized the period from April 2001 to March 2002. A reduced migration rate in the year from April 2002 to March 2003 resulted in significant genetic structuring between cropping regions. This differentiation was established within two or three generations. Genetic drift alone is unlikely to drive genetic differentiation over such a small number of generations, unless it is accompanied by extreme bottlenecks and/or selection. Helicoverpa armigera in Australia demonstrated isolation by distance, so immigration into cropping regions is more likely to come from nearby regions than from afar. This effect was most pronounced in years with limited migration. However, there is evidence of long distance dispersal events in periods of high migration (April 2001-March 2002). The implications of highly variable migration patterns for resistance management are considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analysis of gene flow and migration of Helicoverpa armigera (Hubner) in a major cropping region of Australia identified substantial genetic structuring, migration events, and significant population genotype changes over the 38-mo sample period from November 1999 to January 2003. Five highly variable microsatellite markers were used to analyze 916 individuals from 77 collections across 10 localities in the Darling Downs. The molecular data indicate that in some years (e.g., April 2002-March 2003), low levels of H. armigera migration and high differentiation between populations occurred, whereas in other years (e.g., April 2001-March 2002), there were higher levels of adult moth movement resulting in little local structuring of populations. Analysis of populations in other Australian cropping regions provided insight into the quantity and direction of immigration of H. armigera adults into the Darling Downs growing region of Australia. These data provide evidence adult moth movement differs from season to season, highlighting the importance of studies in groups such as the Lepidoptera extending over consecutive years, because short-term sampling may be misleading when population dynamics and migration change so significantly. This research demonstrates the importance of maintaining a coordinated insecticide resistance management strategy, because in some years H. armigera populations may be independent within a region and thus significantly influenced by local management practices; however, periods with high migration will occur and resistance may rapidly spread.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The population dynamics of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) in the Murrumbidgee Valley, Australia, has been characterized using five highly variable microsatellite loci. In the 2001-2002 growing season, there were very high levels of migration into the Murrumbidgee Valley with no detectable genetic structuring, consistent with previous analyses on a national scale. By contrast, there was significant genetic structuring over the 2002-2003 growing season, with three distinct genetic types detected. The first type corresponded to the first two generations and was derived from local individuals emerging from diapause and their progeny. The second genetic type corresponded to generation 3 and resulted from substantial immigration into the region. There was another genetic shift in generation 4, which accounts for the third genetic type of the season. This genetic shift occurred despite low levels of immigration. During the third generation of the 2002-2003 growing season, different population dynamics was characterized for H. armigera on maize, Zea mays L., and cotton Gossipium hirsutum L. Populations on cotton tended to cycle independently with very little immigration from outside the region or from maize within the region. Maize acted as a major sink for immigrants from cotton and from outside the region. If resistance were to develop on cotton under these circumstances, susceptible individuals from maize or from other regions would not dilute this resistance. In addition, resistance is likely to be transferred to maize and be perpetuated until diapause, from where it may reemerge next season. If low levels of immigration were to occur on transgenic cotton, this may undermine the effectiveness of refugia, especially noncotton refugia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing loss of conventional fungicides due to pathogen resistance and general unacceptability in terms of public and environmental risk have favoured the introduction of integrated pest management (IPM) programmes. Induction of natural disease resistance (NDR) in harvested horticultural crops using physical, biological and/or chemical elicitors has received increasing attention over recent years, it being considered a preferred strategy for disease management. This article reviews the enhancement of constitutive and inducible antifungal compounds and suppression of postharvest diseases through using elicitors. The effect of timing of pre- and/or postharvest elicitor treatment and environment on the degree of elicitation and the potential for inducing local acquired resistance, systemic acquired resistance and/or induced systemic resistance to reduce postharvest disease is discussed. The review highlights that more applied and basic research is required to understand the role that induced NDR can play in achieving practical suppression of postharvest diseases as part of an IPM approach. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 Accurate assessment of the impact of natural enemies on pest populations is fundamental to the design of robust integrated pest management programmes. In most situations, diseases, predators and parasitoids act contemporaneously on insect pest populations and the impact of individual natural enemies, or specific groups of natural enemies, is difficult to interpret. These problems are exacerbated in agro-ecosystems that are frequently disrupted by the application of insecticides. 2 A combination of life-table and natural enemy exclusion techniques was utilized to develop a method for the assessment of the impact of endemic natural enemies on Plutella xylostella populations on commercial Brassica farms. 3 At two of the experimental sites, natural enemies had no impact on P. xylostella survival, at two other sites, natural enemy impact was low but, at a fifth site, natural enemies drastically reduced the P. xylostella population. 4 The calculation of marginal death rates and associated k-values allowed the comparison of mortality factors between experimental sites, and indicated that larval disappearance was consistently the most important mortality factor, followed by egg disappearance, larval parasitism and pupal parasitism. The appropriateness of the methods and assumptions made to calculate the marginal death rates are discussed. 5 The technique represents a robust and easily repeatable method for the analysis of the activity of natural enemies of P. xylostella, which could be adapted for the study of other phytophagous pests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This manuscript provides a summary of the results presented at a symposium organized to accumulate information on factors that influence the prevalence of acaricide resistance and tick-borne diseases. This symposium was part of the 19th International Conference of the World Association for the Advancement of Veterinary Parasitology (WAAVP), held in New Orleans, LA, USA, during August 10-14, 2003. Populations of southern cattle ticks, Boophilus microplus, from Mexico have developed resistance to many classes of acaricide including chlorinated hydrocarbons (DDT), pyrethroids, organ ophosphates, and formamidines (amitraz). Target site mutations are the most common resistance mechanism observed, but there are examples of metabolic mechanisms. In many pyrethroid resistant strains, a single target site mutation on the Na+ channel confers very high resistance (resistance ratios: >1000x) to both DDT and all pyrethroid acaricides. Acetylcholine esterase affinity for OPs is changed in resistant tick populations. A second mechanism of OP resistance is linked to cytochrome P450 monooxygenase activity. A PCR-based assay to detect a specific sodium channel gene mutation that is associated with resistance to permethrin has been developed. This assay can be performed on individual ticks at any life stage with results available in a few hours. A number of Mexican strains of B. microplus with varying profiles of pesticide resistance have been genotyped using this test. Additionally, a specific metabolic esterase with permethrin-hydrolyzing activity, CzEst9, has been purified and its gene coding region cloned. This esterase has been associated with high resistance to permethrin in one Mexican tick population. Work is continuing to clone specific acetylcholinesterase (AChE) and carboxylesterase genes that appear to be involved in resistance to organophosphates. Our ultimate goal is the design of a battery of DNA- or ELISA-based assays capable of rapidly genotyping individual ticks to obtain a comprehensive profile of their susceptibility to various pesticides. More outbreaks of clinical bovine babesisois and anaplasmosis have been associated with the presence of synthetic pyrethroid (SP) resistance when compared to OP and amidine resistance. This may be the result of differences in the temporal and geographic patterns of resistance development to the different acaricides. If acaricide resistance develops slowly, herd immunity may not be affected. The use of pesticides for the control of pests of cattle other than ticks can affect the incidence of tick resistance and tick-borne diseases. Simple analytical models of tick- and tsetse-bome diseases suggest that reducing the abundance of ticks, by treating cattle with pyrethroids for example, can have a variety of effects on tick-bome diseases. In the worst-case scenario, the models suggest that treating cattle might not only have no impact on trypanosomosis but could increase the incidence of tick-bome disease. In the best-case, treatment could reduce the incidence of both trypanosomosis and tick-bome diseases Surveys of beef and dairy properties in Queensland for which tick resistance to amitraz was known were intended to provide a clear understanding of the economic and management consequences resistance had on their properties. Farmers continued to use amitraz as the major acaricide for tick control after the diagnosis of resistance, although it was supplemented with moxidectin (dairy farms) or fluazuron, macrocyclic lactones or cypermethrin/ chlorfenvinphos. (C) 2004 Published by Elsevier B.V.