11 resultados para Initial growth
em University of Queensland eSpace - Australia
Resumo:
One of the first and most enduring roles identified for the plant hormone auxin is the mediation of apical dominance. Many reports have claimed that reduced stem indole-3-acetic acid (IAA) levels and/ or reduced basipetal IAA transport directly or indirectly initiate bud growth in decapitated plants. We have tested whether auxin inhibits the initial stage of bud release, or subsequent stages, in garden pea (Pisum sativum) by providing a rigorous examination of the dynamics of auxin level, auxin transport, and axillary bud growth. We demonstrate that after decapitation, initial bud growth occurs prior to changes in IAA level or transport in surrounding stem tissue and is not prevented by an acropetal supply of exogenous auxin. We also show that auxin transport inhibitors cause a similar auxin depletion as decapitation, but do not stimulate bud growth within our experimental time- frame. These results indicate that decapitation may trigger initial bud growth via an auxin-independent mechanism. We propose that auxin operates after this initial stage, mediating apical dominance via autoregulation of buds that are already in transition toward sustained growth.
Resumo:
Purpose: Vascular endothelial growth factor-A (VEGF-A) is crucial to retinal vascular growth, both normal and pathological. VEGF-B, recently characterized, is reported to be expressed in retinal tissues, but the importance of VEGF-B to retinal vascular development remained unknown. The aim of this study was to analyse retinal vascular growth in the Vegfb (-/-) knockout mouse. Methods: Retinal vascular growth was measured in Vegfb (-/-) knockout mice raised under normal conditions, and Vegfb (-/-) knockout mice with an oxygen-induced proliferative retinopathy. Wild type Vegfb (+/+) mice served as controls. Vessels were perfused with ink and retinal flatmounts secondarily labelled with FITC-lectin (BS-1, Griffonia simplicifolia ). Area and diameter of retinal growth and retinal vascular growth were recorded over days 0-20, and capillary density and mean diameter recorded from day 17 pups. Results: A variety of techniques confirmed that Vegfb (+/+) mice expressed VEGF-B and that VEGF-B expression was absent in Vegfb (-/-) mice. Vegfb (-/-) mice raised in room air showed no significant differences from Vegfb (+/+) controls. No differences were found in oxygen-induced retinopathy between Vegfb (-/-) and Vegfb (+/+) pups in either the extent of the initial oxygen-induced ablation, or in the regrowth of retinal vessels or vitreal (neovascular) sprouts; vitreal sprouts are important markers of the abnormal proliferative response, and are maximally expressed on day 17 in this model of oxygen-induced retinopathy. Conclusions: These results indicate that a lack of VEGF-B does not significantly affect development of the retinal vasculature under normal conditions, nor does it appear to affect the proliferative retinal responses seen in oxygen-induced retinopathy.
Resumo:
Variations in the growth and survival of six families of juvenile (initial mean weight = 4.16 g) Penaeus japonicus were examined at two densities (48 and 144 individuals m(-2)) in a controlled laboratory experiment. Survival was very high throughout the experiment (95.4%), but differed significantly between densities and rearing tanks. Family, sex and family x density interaction did not significantly affect survival. Mean specific growth rate (SGR) of the shrimp was 18% faster at the low density (1.93 +/- 0.05% day(-1)) than at high density (1.64 +/- 0.03% day(-1)). However, there was a small but significant interaction between family and density indicating that growth of the families was not consistent at both densities. The inconsistent growth of the families across the two densities resulted in a change in the relative performance (ranking) of families at each density. Sex, rearing tank and rearing cage also affected growth of the shrimp. Mean SGR of the females (1.79 +/- 0.03% day(-1)) was 5% faster than males (1.70 +/- 0.03% day(-1)) when averaged across both densities. Shrimp grew significantly faster in rearing tank 3 than rearing tank 1 or 2 at both densities. Results of the present study suggest that family x density interaction could affect the efficiency of selection for growth if shrimp stocks produced from shrimp breeding programs are to be grown across a wide range of densities. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.
Resumo:
Despite a century's knowledge that soluble aluminum (Al) is associated with acid soils and poor plant growth, it is still uncertain how Al exerts its deleterious effects. Hypotheses include reactions of Al with components of the cell wall, plasmalemma, or cytoplasm of cells close to the root tip, thereby reducing cell expansion and root growth. Digital microscopy was used to determine the initial injuries of soluble Al to mungbean (Vigna radiata L.) roots. Roots of young seedlings were marked with activated carbon particles and grown in 1 mm CaCl2 solution at pH 6 for ca. 100 min (control period), and AlCl3 solution was added to ensure a final concentration of 50 muM Al (pH 4). Further studies were conducted on the effects of pH 4 with and without 50 muM Al. Four distinct, but possibly related, initial detrimental effects of soluble Al were noted. First, there was a 56-75% reduction in the root elongation rate, first evident 18-52 min after the addition of Al, root elongation continuing at a decreased rate for ca. 20 It. Decreasing solution pH from 6 to 4 increased the root elongation rate 4-fold after 5 min, which decreased to close to the original rate after 130 min. The addition of Al during the period of rapid growth at pH 4 reduced the root elongation rate by 71% 14 min after the addition of Al. The activated carbon marks on the roots showed that, during the control period, the zone of maximum root growth occurred at 2,200-5,100 mum from the root tip (i.e. the cell elongation zone). It was there that Al first exerted its detrimental effect and low pH increased root elongation. Second, soluble Al prevented the progress of cells from the transition to the elongation phase, resulting in a considerable reduction of root growth over the longer term. The third type of soluble Al injury occurred after exposure for ca. 4 h to 50 mum Al when a kink developed at 2,370 mum from the root tip. Fourth, ruptures of the root epidermal and cortical cells at 1,900-2,300 mum from the tip occurred greater than or equal to4.3 h after exposure to soluble Al. The timing and location of Al injuries support the contention that Al initially reduces cell elongation, thus decreasing root growth and causing damage to epidermal and cortical cells.
Resumo:
Fibroblast growth factor (FGF) receptors (FGFRs) signal to modulate diverse cellular functions, including epithelial cell morphogenesis. In epithelial cells, E-cadherin plays a key role in cell-cell adhesion, and its function can be regulated through endocytic trafficking. In this study, we investigated the location, trafficking, and function of FGFR1 and E-cadherin and report a novel mechanism, based on endocytic trafficking, for the coregulation of E-cadherin and signaling from FGFR1. FGF induces the internalization of surface FGFR1 and surface E-cadherin, followed by nuclear translocation of FGFR1. The internalization of both proteins is regulated by common endocytic machinery, resulting in cointernalization of FGFR1 and E-cadherin into early endosomes. By blocking endocytosis, we show that this is a requisite, initial step for the nuclear translocation of FGFR1. Overexpression of E-cadherin blocks both the coendocytosis of E-cadherin and FGFR1, the nuclear translocation of FGFR1 and FGF-induced signaling to the mitogen-activated protein kinase pathway. Furthermore, stabilization of surface adhesive E-cadherin, by overexpressing p120(ctn), also blocks internalization and nuclear translocation of FGFR1. These data reveal that conjoint endocytosis and trafficking is a novel mechanism for the coregulation of E-cadherin and FGFR1 during cell signaling and morphogenesis.
Resumo:
The effect of soil puddling on growth of lowland rice (Oryza sativa) and post-rice mungbean (Vigna radiata) was investigated using mini rice beds under controlled glasshouse conditions. Each mini rice bed was approximately 1 m(3) in size. Three different soil types were used: a well-drained, permeable loam; a hardsetting, structurally unstable silty loam; and a medium clay. Rice yields were reduced by low puddling compared with high puddling intensity on the loam but not affected on the heavier textured soils (silty loam and clay). Yield of mungbean was reduced on highly puddle, structurally unstable soil, indicating that puddling should be reduced on structurally unstable soils. Under glasshouse condition where crop establishment was not a limiting factor and plant available water in 0.65 m of soil was 100 mm, mungbean yields of >1 t/ha were achieved. However, under conditions where subsoil water reserves were depleted for the production of vegetative biomass during initial optimal growing condition, grain yield remained well below 1 t/ha.
Resumo:
A solution culture experiment was conducted to examine the effect of Cu toxicity on Rhodes grass (Chloris gayana Knuth.), a pasture species used in mine-site rehabilitation. The experiment used dilute, solution culture to achieve external nutrient concentrations, which were representative of the soil solution, and an ion exchange resin to maintain stable concentrations of Cu in solution. Copper toxicity was damaging to plant roots, with symptoms ranging from disruption of the root cuticle and reduced root hair proliferation, to severe deformation of root structure. A reduction in root growth was observed at an external Cu concentration of < 1 mu M, with damage evident from an external concentration of 0.2 mu M. Critical to the success of this experiment, in quantitatively examining the relationship between external Cu concentration and plant response, was the use of ion exchange resin to buffer the concentration of Cu in solution. After some initial difficulty with pH control, stable concentrations of Cu in solution were maintained for the major period of plant growth. The development of this technique will facilitate future investigations of the effect of heavy metals on plants.
Resumo:
A computer model was developed to simulate the cake formation and growth in cake filtration at an individual particle level. The model was shown to be able to generate structural information and quantify the cake thickness, average cake solidosity, filtrate volume, filtrate flowrate for constant pressure filtration or pressure drop across the filter unit for constant rate filtration as a function of filtration time. The effects of particle size distribution and key operational variables such as initial filtration flowrate, maximum pressure drop and initial solidosity were examined based on the simulated results. They are qualitatively comparable to those observed in physical experiments. The need for further development in simulation was also discussed. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Reforestation in tropical areas is usually attempted by planting seedlings but, direct seeding (the artificial addition or sowing of seed) may be an alternative way of accelerating forest recovery and successional processes. This study investigated the effects of various sowing treatments (designed to create different microsite conditions for seed germination) and seed sizes on the early establishment and growth of directly sown rainforest tree species in a variety of experimental plots at three sites in the wet tropical region of north-cast Queensland, Australia. The different sowing treatments were found to have significant effects on seedling establishment. Broadcast sowing treatments were ineffective and resulted in very poor seedling establishment and high seed wastage. Higher establishment rates occurred when seeds were buried. Seed size was found to be an important factor affecting establishment in relation to micro-site condition. In general, larger seeded species had higher establishment rates at all three sites than species of small and intermediate seed size, but only in sowing treatments where seeds were buried. Overall these results suggest that direct sowing of seed can be used as a too] to accelerate recolonisation of certain rainforest tree species on degraded tropical lands, but initial success will be dependent on the choice of sowing method and its suitability for the seed types selected. The results also indicate that the recruitment of naturally dispersed tree species at degraded sites is likely to be severely limited by the availability of suitable microsites for seed germination. Consequently the natural recovery of degraded sites via seed rain can be expected to be slow and unpredictable, particularly in areas where soil compaction has occurred. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A framework is presented for modeling the nucleation in the constitutionally supercooled liquid ahead of the advancing solid/liquid interface. The effects of temperature gradient, imposed velocity, slope of liquidus, and initial concentration have been taken into account in this model by considering the effect of interface retardation, which is caused by solute buildup at the interface. Furthermore, the effect of solute concentration on the chemical driving force for nucleation has been considered in this model. The model is used for describing the nucleation of Al-Si and Al-Cu alloys. It was found that the solute of Si has a significant impact on the chemical driving force for nucleation in AI-Si alloys whereas Cu has almost no effect in Al-Cu alloys.
Resumo:
The effects of ammonium sulphate concentration on the osmotic second virial coefficient (B-AA/M-A) for equine serum albumin (pH 5.6, 20 degrees C) have been examined by sedimentation equilibrium. After an initial steep decrease with increasing ammonium sulphate concentration, B-AA/M-A assumes an essentially concentration-independent magnitude of 8-9 ml/g. Such behaviour conforms with the statistical-mechanical prediction that a sufficient increase in ionic strength should effectively eliminate the contributions of charge interactions to B-AA/M-A but have no effect on the covolume contribution (8.4 ml/g for serum albumin). A similar situation is shown to apply to published sedimentation equilibrium data for lysozyme (pH 4.5). Although termed osmotic second virial coefficients and designated as such (B-22), the negative values obtained in published light scattering studies of both systems have been described incorrectly because of the concomitant inclusion of the protein-salt contribution to thermodynamic nonideality of the protein. Those negative values are still valid predictors of conditions conducive to crystal growth inasmuch as they do reflect situations in which there is net attraction between protein molecules. However, the source of attraction responsible for the negative virial coefficient stems from the protein-salt rather than the protein-protein contribution, which is necessarily positive. (c) 2005 Elsevier B.V. All rights reserved.