10 resultados para Information finding
em University of Queensland eSpace - Australia
Resumo:
Since the late 1980s, it has been increasingly recognized that the experiences of people with dementia have been omitted from research in the area of dementia and memory loss. More recently, it has been accepted that people with dementia have insight into their condition and, therefore, the ability to contribute to research. A qualitative research project was undertaken with nine participants to explore the experiences and coping strategies of people with dementia. Interviews were undertaken and the data analysed using thematic analysis. Three major themes emerged: coming to terms with memory loss, maintaining control and independence, and the impact of illness on relationships. Understanding the reality for people is essential given that representations of the catastrophic impact of dementia generate high levels of anxiety and depression. Implications for nurses' practice include the need for skilled, well-paced, sensitive and ongoing information about the condition, along with the need to recognize and support the active coping strategies of people with memory loss.
Resumo:
Pattern discovery in a long temporal event sequence is of great importance in many application domains. Most of the previous work focuses on identifying positive associations among time stamped event types. In this paper, we introduce the problem of defining and discovering negative associations that, as positive rules, may also serve as a source of knowledge discovery. In general, an event-oriented pattern is a pattern that associates with a selected type of event, called a target event. As a counter-part of previous research, we identify patterns that have a negative relationship with the target events. A set of criteria is defined to evaluate the interestingness of patterns associated with such negative relationships. In the process of counting the frequency of a pattern, we propose a new approach, called unique minimal occurrence, which guarantees that the Apriori property holds for all patterns in a long sequence. Based on the interestingness measures, algorithms are proposed to discover potentially interesting patterns for this negative rule problem. Finally, the experiment is made for a real application.
Resumo:
Finding single pair shortest paths on surface is a fundamental problem in various domains, like Geographic Information Systems (GIS) 3D applications, robotic path planning system, and surface nearest neighbor query in spatial database, etc. Currently, to solve the problem, existing algorithms must traverse the entire polyhedral surface. With the rapid advance in areas like Global Positioning System (CPS), Computer Aided Design (CAD) systems and laser range scanner, surface models axe becoming more and more complex. It is not uncommon that a surface model contains millions of polygons. The single pair shortest path problem is getting harder and harder to solve. Based on the observation that the single pair shortest path is in the locality, we propose in this paper efficient methods by excluding part of the surface model without considering them in the search process. Three novel expansion-based algorithms are proposed, namely, Naive algorithm, Rectangle-based Algorithm and Ellipse-based Algorithm. Each algorithm uses a two-step approach to find the shortest path. (1) compute an initial local path. (2) use the value of this initial path to select a search region, in which the global shortest path exists. The search process terminates once the global optimum criteria are satisfied. By reducing the searching region, the performance is improved dramatically in most cases.
Resumo:
A major task of traditional temporal event sequence mining is to predict the occurrences of a special type of event (called target event) in a long temporal sequence. Our previous work has defined a new type of pattern, called event-oriented pattern, which can potentially predict the target event within a certain period of time. However, in the event-oriented pattern discovery, because the size of interval for prediction is pre-defined, the mining results could be inaccurate and carry misleading information. In this paper, we introduce a new concept, called temporal feature, to rectify this shortcoming. Generally, for any event-oriented pattern discovered under the pre-given size of interval, the temporal feature is the minimal size of interval that makes the pattern interesting. Thus, by further investigating the temporal features of discovered event-oriented patterns, we can refine the knowledge for the target event prediction.
Resumo:
Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.
Resumo:
Email is an important form of asynchronous communication. Visualizing analyses of email communication patterns during a collaborative activity help us better understand the nature of collaboration, and identify the key players. By analysing the contents of email communication and adding reflective comments on its perceived importance from the participants of a collaboration new information can be gleaned not immediately obvious in its original flat form. This paper outlines a proof-of-concept prototype collaborative email visualisation schema. Data from a collaboration case study is analysed and subsequently employed to construct a display of the relative impact of both key players and the types of email used.
Resumo:
A major task of traditional temporal event sequence mining is to find all frequent event patterns from a long temporal sequence. In many real applications, however, events are often grouped into different types, and not all types are of equal importance. In this paper, we consider the problem of efficient mining of temporal event sequences which lead to an instance of a specific type of event. Temporal constraints are used to ensure sensibility of the mining results. We will first generalise and formalise the problem of event-oriented temporal sequence data mining. After discussing some unique issues in this new problem, we give a set of criteria, which are adapted from traditional data mining techniques, to measure the quality of patterns to be discovered. Finally we present an algorithm to discover potentially interesting patterns.