139 resultados para Influenza A virus
em University of Queensland eSpace - Australia
Resumo:
Tennis played at an elite level requires intensive training characterized by repeated bouts of brief intermittent high intensity exercise over relatively long periods of time (1 - 3 h or more). Competition can place additional stress on players. The purpose of this study was to investigate the temporal association between specific components of tennis training and competition, the incidence of upper respiratory tract infections (URT1), and salivary IgA, in a cohort of seventeen elite female tennis players. Timed, whole unstimulated saliva samples were collected before and after selected 1-h training sessions at 2 weekly intervals, over 12 weeks. Salivary IgA concentration was measured by ELISA and IgA secretion rate calculated (mug IgA x ml(-1) x ml saliva x min(-1)). Players reported URTI symptoms and recorded training and competition in daily logs. Data analysis showed that higher incidence of URTI was significantly associated with increased training duration and load, and competition level, on a weekly basis. Salivary IgA secretion rate (S-IgA) dropped significantly after 1 hour of tennis play. Over the 12-week period, pre-exercise salivary IgA concentration and secretion rate were directly associated with the amount of training undertaken during the previous day and week (p < 0.05). However, the decline in S-IgA after 1 h of intense tennis play was also positively related to the duration and load of training undertaken during the previous day and week (p < 0.05). Although exercise-induced suppression of salivary IgA may be a risk factor, it could not accurately predict the occurrence of URTI in this cohort of athletes.
Resumo:
Using the Roche LightCycler we developed a real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay using the Influenza A LightCycler RT-PCR (FA-LC-RTPCR) for the rapid detection of Influenza A. The assay was used to examine 178 nasopharyngeal aspirate (NPA) samples, from patients with clinically recognised respiratory tract infection, for the presence of Influenza A RNA. The results were then compared to a testing algorithm combining direct immunofluorescent assy (DFA) and a culture augmented DFA (CA-DFA) assay. In total, 76 (43%) specimens were positive and 98 (55%) specimens were negative by both the FA-LC-RTPCR and the DFA and CA-DFA algorithm. In addition, the FA-LC-RTPCR detected a further 4 (2%) positive specimens, which were confirmed by a conventional RT-PCR method. The high level of sensitivity and specificity, combined with the rapid turnaround time for results, makes the LC-RT-PCR assay suitable for the detection of Influenza A in clinical specimens.
Resumo:
We present a novel protein crystallization strategy, applied to the crystallization of human T cell leukemia virus type 1 (HTLV-1) transmembrane protein gp21 lacking the fusion peptide and the transmembrane domain, as a chimera with the Escherichia coli maltose binding protein (MBP). Crystals could not be obtained with a MBP/gp21 fusion protein in which fusion partners were separated by a flexible linker, but were obtained after connecting the MBP C-terminal alpha-helix to the predicted N-terminal alpha-helical sequence of gp21 via three alanine residues. The gp21 sequences conferred a trimeric structure to the soluble fusion proteins as assessed by sedimentation equilibrium and X-ray diffraction, consistent with the trimeric structures of other retroviral transmembrane proteins. The envelope protein precursor, gp62, is likewise trimeric when expressed in mammalian cells. Our results suggest that MBP may have a general application for the crystallization of proteins containing N-terminal alpha-helical sequences.
Resumo:
Retroviral entry into cells depends on envelope glycoproteins, whereby receptor binding to the surface-exposed subunit triggers membrane fusion by the transmembrane protein (TM) subunit. We determined the crystal structure at 2.5-Angstrom resolution of the ectodomain of gp21, the TM from human T cell leukemia virus type 1. The gp21 fragment was crystallized as a maltose-binding protein chimera, and the maltose-binding protein domain was used to solve the initial phases by the method of molecular replacement. The structure of gp21 comprises an N-terminal trimeric coiled coil, an adjacent disulfide-bonded loop that stabilizes a chain reversal, and a C-terminal sequence structurally distinct from HIV type 1/simian immunodeficiency virus gp41 that packs against the coil in an extended antiparallel fashion. Comparison of the gp21 structure with the structures of other retroviral TMs contrasts the conserved nature of the coiled coil-forming region and adjacent disulfide-bonded loop with the variable nature of the C-terminal ectodomain segment. The structure points to these features having evolved to enable the dual roles of retroviral TMs: conserved fusion function and an ability to anchor diverse surface-exposed subunit structures to the virion envelope and infected cell surface. The structure of gp21 implies that the N-terminal fusion peptide is in close proximity to the C-terminal transmembrane domain and likely represents a postfusion conformation.
Resumo:
Retrovirus entry into cells follows receptor binding by the surface exposed envelope glycoprotein (Env) subunit (SU), which triggers the membrane fusion activity of the transmembrane (TM) protein. TM protein fragments expressed in the absence of SU adopt helical hairpin structures comprising a central coiled coil, a region of chain reversal containing a disulfide-bonded loop, and a C-terminal segment that packs onto the exterior of the coiled coil in an antiparallel manner. Here we used in vitro mutagenesis to test the functional role of structural elements observed in a model helical hairpin, gp21 of human T-lymphotropic virus type 1. Membrane fusion activity requires the stabilization of the N and C termini of the central coiled coil by a hydrophobic N cap and a small hydrophobic core, respectively. A conserved Gly-Gly hinge motif preceding the disulfide-bonded loop, a salt bridge that stabilizes the chain reversal region, and interactions between the C-terminal segment and the coiled coil are also critical for fusion activity. Our data support a model whereby the chain reversal region transmits a conformational signal from receptor-bound SU to induce the fusion-activated helical hairpin conformation of the TM protein.
Resumo:
A comprehensive study using virological and serological approaches was carried out to determine the status of live healthy mallard ducks (Anas platyrhynchos) in New Zealand for infections with avian paramyxoviruses (APMV) and influenza viruses (AIV). Thirty-three viruses isolated from 321 tracheal and cloacal swabs were characterized as: 6 AIV (two H5N2 and four H4N6), 10 APMV-1 and 17 APMV-4. Of 335 sera samples tested for AIV antibodies, 109 (32.5%) sera were positive by nucleoprotein-blocking ELISA (NP-B-ELISA). Serum samples (315) were examined for antibody to APMV-1, -2, -3, -4, -6, -7, -8, -9 by the haemagglutination inhibition test. The largest number of reactions, with titres up to greater than or equal to 1/64, was to APMV-1 (93.1%), followed by APMV-6 (85.1%), APMV-8 (56%), APMV-4 (51.7%), APMV-7 (47%), APMV-9 (15.9%), APMV-2 (13.3%) and APMV-3 (6.0%). All of the H5N2 isolates of AIV and the APMV-1 isolates from this and earlier New Zealand studies had low pathogenicity indices assessed by the Intravenous Pathogenicity Index (IVPI) with the result 0.00 and Intracerebral Pathogenicity Index (ICPI) with results 0.00-0.16. Partial genomic and antigenic analyses were also consistent with the isolates being non-pathogenic. Phylogenetic analysis of the 10 APMV-1 isolates showed 9 to be most similar to the reference APMV-1 strain D26/76 originally isolated in Japan and also to the Que/66 strain, which was isolated in Australia. The other isolate was very similar to a virus (MC 110/77) obtained from a shelduck in France.
Resumo:
Neuraminidase inhibitors, oseltamivir and zanamivir, are used for the treatment of, and protection from, influenza. The safety of these compounds has been assessed in systematic reviews. However, the data presented are somewhat limited by the paucity of good quality adverse event data available. The majority of safety outcomes are based on evidence from just one or two randomised controlled trials. The results of the systematic reviews suggest that neuraminidase inhibitors have a reasonable side effect and adverse effect profile if they are to be used to treat or protect patients against a life-threatening disease. However, if these compounds are to be prescribed in situations in which avoidance of inconvenience or minor discomfort is hoped for, then the balance of harms to benefits will be more difficult to judge.
Resumo:
Studies were undertaken to determine if replication-deficient Semliki Forest virus expression vectors could be successfully used to express foreign gene constructs in insect cell lines. Using green fluorescent protein (GFP) as a marker we recorded infection levels of nearly 100% in the Aedes albopictus cell lines C6/36 and Aa23T, as well as in the Ae. aegypti cell line MOS20. The virus was capable of infecting an Anopheles gambiae cell line MOS55. The amount of GFP protein produced in each cell line was quantified. Northern analysis of viral transcription revealed the presence of novel transcripts in Aa23T, C6/36, and MOS55 cell lines, but not in the BHK or MOS20. The initial characterization of these transcripts is described.
Resumo:
The complete nucleotide sequence of the genomic RNA from the insect picorna-like virus Drosophila C virus (DCV) was determined. The DCV sequence predicts a genome organization different to that of other RNA virus families whose sequences are known. The single-stranded positive-sense genomic RNA is 9264 nucleotides in length and contains two large open reading frames (ORFs) which are separated by 191 nucleotides. The 5' ORF contains regions of similarities with the RNA-dependent RNA polymerase, helicase and protease domains of viruses from the picornavirus, comovirus and sequivirus families. The 3' ORF encodes the capsid proteins as confirmed by N-terminal sequence analysis of these proteins. The capsid protein coding region is unusual in two ways: firstly the cistron appears to lack an initiating methionine and secondly no subgenomic RNA is produced, suggesting that the proteins may be translated through internal initiation of translation from the genomic length RNA. The finding of this novel genome organization for DCV shows that this virus is not a member of the Picornaviridae as previously thought, but belongs to a distinct and hitherto unrecognized virus family.
Resumo:
To evaluate an antigen delivery system in which exogenous antigen can target the major histocompatibility complex (MHC) class I pathway, a single human papillomavirus (HPV) 16 E7 cytotoxic T lymphocyte (CTL) epitope and a single HIV gp160 CTL epitope were separately fused to the C-terminus or bovine papillomavirus 1 (BPV1) L1 sequence to form hybrid BPV1L1 VLPs. Mice immunized with these hybrid VLPs mounted strong CTL responses against the relevant target cells in the absence of any adjuvants. In addition, the CTL responses induced by immunization with BPV1L1/HPV16E7CTL VLPs protected mice against challenge with E7-transformed tumor cells. Furthermore, a high titer-specific antibody response against BPV1L1 VLPs was also induced, and this antiserum could inhibit papillomavirus-induced agglutination of mouse erythrocytes, suggesting that the antibody may recognize conformational determinates relevant to virus neutralization. These data demonstrate that hybrid BPV1L1 VLPs can be used as carriers to target antigenic epitopes to both the MHC class I and class II pathways, providing a promising strategy for the design of vaccines to prevent virus infection, with the potential to elicit therapeutic virus-specific CTL responses. (C) 1998 Academic Press.
Resumo:
The role of individual viral proteins in the immune response to bluetongue virus (BTV) is not clearly understood. To investigate the contributions of the outer capsid proteins, VP2 and VP5, and possible interactions between them, these proteins were expressed from recombinant vaccinia viruses either as individual proteins or together in double recombinants, or with the core protein VP7 in a triple recombinant. Comparison of the immunogenicity of the vaccinia expressed proteins with BTV expressed proteins was carried out by inoculation of rabbits and sheep. Each of the recombinants was capable of stimulating an anti-BTV antibody response, although there was a wide range in the level of response between animals and species. Vaccinia-expressed VP2 was poorly immunogenic, particularly in rabbits. VP5, on the whole, stimulated higher ELISA titers in rabbits and sheep and in some animals in both species was able to stimulate virus neutralizing antibodies. When the protective efficacy of VP2 and VP5 was tested in sheep, vaccinia-expressed VP2, VP5 and VP2 + VP5 were protective, with the most consistent protection being in groups immunized with both proteins. (C) 1997 Elsevier Science B.V.
Resumo:
Development of CD8 alpha beta CTL epitope-based vaccines requires an effective strategy capable of co-delivering large numbers of CTL epitopes, Here we describe a DNA plasmid encoding a polyepitope or polytope protein, which contained multiple contiguous minimal murine CTL epitopes, Mice vaccinated with this plasmid made MHC-restricted CTL responses to each of the epitopes, and protective CTL were demonstrated in recombinant vaccinia virus, influenza virus, and tumor challenge models, CTL responses generated by polytope DNA plasmid vaccination lasted for 1 yr, could be enhanced by co-delivering a gene for granulocyte-macrophage CSF, and appeared to be induced in the absence of CD4 T cell-mediated help, The ability to deliver large numbers of CTL epitopes using relatively small polytope constructs and DNA vaccination technology should find application in the design of human epitope-based CTL vaccines, in particular in vaccines against EBV, HIV, and certain cancers.