3 resultados para Infinite.
em University of Queensland eSpace - Australia
Resumo:
A group is termed parafree if it is residually nilpotent and has the same nilpotent quotients as a given free group. Since free groups are residually nilpotent, they are parafree. Nonfree parafree groups abound and they all have many properties in common with free groups. Finitely presented parafree groups have solvable word problems, but little is known about the conjugacy and isomorphism problems. The conjugacy problem plays an important part in determining whether an automorphism is inner, which we term the inner automorphism problem. We will attack these and other problems about parafree groups experimentally, in a series of papers, of which this is the first and which is concerned with the isomorphism problem. The approach that we take here is to distinguish some parafree groups by computing the number of epimorphisms onto selected finite groups. It turns out, rather unexpectedly, that an understanding of the quotients of certain groups leads to some new results about equations in free and relatively free groups. We touch on this only lightly here but will discuss this in more depth in a future paper.
Resumo:
In this paper, we present an analysis of argon adsorption in cylindrical pores having amorphous silica structure by means of a nonlocal density functional theory (NLDFT). In the modeling, we account for the radial and longitudinal density distributions, which allow us to consider the interface between the liquidlike and vaporlike fluids separated by a hemispherical meniscus in the canonical ensemble. The Helmholtz free energy of the meniscus was determined as a function of pore diameter. The canonical NLDFT simulations show the details of density rearrangement at the vaporlike and liquidlike spinodal points. The limits of stability of the smallest bridge and the smallest bubble were also determined with the canonical NLDFT. The energy of nucleation as a function of the bulk pressure and the pore diameter was determined with the grand canonical NLDFT using an additional external potential field. It was shown that the experimentally observed reversibility of argon adsorption isotherms at its boiling point up to the pore diameter of 4 nm is possible if the potential barrier of 22kT is overcome due to density fluctuations.