7 resultados para Inertial Reels.

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the dynamics of the capillary thinning and break-up process for low viscosity elastic fluids such as dilute polymer solutions. Standard measurements of the evolution of the midpoint diameter of the necking fluid filament are augmented by high speed digital video images of the break up dynamics. We show that the successful operation of a capillary thinning device is governed by three important time scales (which characterize the relative importance of inertial, viscous and elastic processes), and also by two important length scales (which specify the initial sample size and the total stretch imposed on the sample). By optimizing the ranges of these geometric parameters, we are able to measure characteristic time scales for tensile stress growth as small as 1 millisecond for a number of model dilute and semi-dilute solutions of polyethylene oxide (PEO) in water and glycerol. If the final aspect ratio of the sample is too small, or the total axial stretch is too great, measurements are limited, respectively, by inertial oscillations of the liquid bridge or by the development of the well-known beads-on-a-string morphology which disrupt the formation of a uniform necking filament. By considering the magnitudes of the natural time scales associated with viscous flow, elastic stress growth and inertial oscillations it is possible to construct an operability diagram characterizing successful operation of a capillary break-up extensional rheometer. For Newtonian fluids, viscosities greater than approximately 70 mPas are required; however for dilute solutions of high molecular weight polymer, the minimum Viscosity is substantially lower due to the additional elastic stresses arising from molecular extension. For PEO of molecular weight 2.10(6) g/mol, it is possible to measure relaxation times of order 1 ms in dilute polymer solutions with zero-shear-rate viscosities on the order of 2-10 mPas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that quantum information can be encoded into entangled states of multiple indistinguishable particles in such a way that any inertial observer can prepare, manipulate, or measure the encoded state independent of their Lorentz reference frame. Such relativistically invariant quantum information is free of the difficulties associated with encoding into spin or other degrees of freedom in a relativistic context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show how to communicate Heisenberg-limited continuous (quantum) variables between Alice and Bob in the case where they occupy two inertial reference frames that differ by an unknown Lorentz boost. There are two effects that need to be overcome: the Doppler shift and the absence of synchronized clocks. Furthermore, we show how Alice and Bob can share Doppler-invariant entanglement, and we demonstrate that the protocol is robust under photon loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selleri's arguments that a consideration of noninertial reference frames in the framework of special relativity identify absolute simultaneity as being Nature's choice of synchronization are considered. In the case of rectilinearly accelerating rockets, it is argued by considering two rockets which maintain a fixed proper separation rather than a fixed separation relative to the inertial frame in which they start from rest, that what seems the most natural choice for a simultaneity convention is problem-dependent and that Einstein's definition is the most natural (though still conventional) choice in this case. In addition, the supposed problems special relativity has with treating a rotating disk, namely how a pulse of light traveling around the circumference of the disk can have a local speed of light equal to c everywhere but a global speed not equal to c, and how coordinate transformations to the disk can give the Lorentz transformations in the limit of large disk radius but small angular velocity, are addressed. It is shown that the theory of Fermi frames solves both of these problems. It is also argued that the question of defining simultaneity relative to a uniformly rotating disk does riot need to be resolved in order to resolve Ehrenfest's paradox.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of drop formation and pinch-off have been investigated for a series of low viscosity elastic fluids possessing similar shear viscosities, but differing substantially in elastic properties. On initial approach to the pinch region, the viscoelastic fluids all exhibit the same global necking behavior that is observed for a Newtonian fluid of equivalent shear viscosity. For these low viscosity dilute polymer solutions, inertial and capillary forces form the dominant balance in this potential flow regime, with the viscous force being negligible. The approach to the pinch point, which corresponds to the point of rupture for a Newtonian fluid, is extremely rapid in such solutions, with the sudden increase in curvature producing very large extension rates at this location. In this region the polymer molecules are significantly extended, causing a localized increase in the elastic stresses, which grow to balance the capillary pressure. This prevents the necked fluid from breaking off, as would occur in the equivalent Newtonian fluid. Alternatively, a cylindrical filament forms in which elastic stresses and capillary pressure balance, and the radius decreases exponentially with time. A (0+1)-dimensional finitely extensible nonlinear elastic dumbbell theory incorporating inertial, capillary, and elastic stresses is able to capture the basic features of the experimental observations. Before the critical "pinch time" t(p), an inertial-capillary balance leads to the expected 2/3-power scaling of the minimum radius with time: R-min similar to(t(p)-t)(2/3). However, the diverging deformation rate results in large molecular deformations and rapid crossover to an elastocapillary balance for times t>t(p). In this region, the filament radius decreases exponentially with time R-min similar to exp[(t(p)-t)/lambda(1)], where lambda(1) is the characteristic time constant of the polymer molecules. Measurements of the relaxation times of polyethylene oxide solutions of varying concentrations and molecular weights obtained from high speed imaging of the rate of change of filament radius are significantly higher than the relaxation times estimated from Rouse-Zimm theory, even though the solutions are within the dilute concentration region as determined using intrinsic viscosity measurements. The effective relaxation times exhibit the expected scaling with molecular weight but with an additional dependence on the concentration of the polymer in solution. This is consistent with the expectation that the polymer molecules are in fact highly extended during the approach to the pinch region (i.e., prior to the elastocapillary filament thinning regime) and subsequently as the filament is formed they are further extended by filament stretching at a constant rate until full extension of the polymer coil is achieved. In this highly extended state, intermolecular interactions become significant, producing relaxation times far above theoretical predictions for dilute polymer solutions under equilibrium conditions. (C) 2006 American Institute of Physics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The benefits of Oscillating Disc Cutting (ODC) over all conventional cutting techniques is that it is capable of breaking very hard rock at acceptable-to-good excavation rates with very low cutter forces. This paper outlines that the oscillating cutting action and the water jets as well as the inertial mass all serve to reduce cutter forces.