86 resultados para Incoherent motion imaging
em University of Queensland eSpace - Australia
Resumo:
Background: left ventricular wall motion on 2d echo (2de) is usually scored visually. we sought to examine the determinants of visually assessed wall motion scoring on 2de by comparison with myocardial thickening quantified on MRI. Methods: using a 16 segment model, we studied 287 segments in 30 patients aged 61+/ -11 years (6 female), with ischaemic LV dysfunction (defined by at least 2 segments dysfunctional on 2de). 2de was performed in 5 views and wall motion scores (WMS) assigned: 1 (normal) 103 segments, 2 (hypokinetic) 93 segments, 3 (akinetic) 87 segments. MRI was used to measure end systolic wall thickness (ESWT), end diastolic wall thickness (EDWT) and percentage systolic wall thickening (SWT%) in the plane of the 2de and to assess WMS in the same planes visually. No patient had a clinical ischemic event between the tests. Results: visual assessment of wall motion by 2de and MRI showed moderate agreement (kappa = 0.425). Resting 2de wall motion correlated significantly (p
Resumo:
The purpose of this study was to quantify the sagittal angular displacement of the head (cranio-cervical flexion) for the five incremental stages of the cranio-cervical flexion test (CCFT). Range of cranio-cervical flexion during the CCFT was measured using a digital imaging method in 20 healthy volunteer subjects. The intra- and inter-rater reliability of the digital imaging technique for the assessment of this movement were also examined. The results of this study demonstrated a linear relationship between the incremental pressure targets of the CCFT and the percentages of full range cranio-cervical flexion range of motion (ROM) measured in the supine lying position of the test using a digital imaging technique. A mean of 22.9% full range cranio-cervical flexion was used to reach the first pressure target of the CCFT followed by linear increments up to 76.6% for the last stage of the test. An increasing amount of cranio-cervical flexion ROM was used to achieve the five successive stages of the CCFT reflecting an increasing contractile demand on the deep cervical flexor muscles. Excellent inter-rater (ICC = 0.994) and intra-rater reliability (ICC = 0.988-0.998) were demonstrated for the angular measurements using this digital imaging technique. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
In modern magnetic resonance imaging (MRI), patients are exposed to strong, nonuniform static magnetic fields outside the central imaging region, in which the movement of the body may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced electric fields and currents in the patient when moving into the MRI scanner and also for head motion at various positions in the magnet. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively shielded 4T magnet system are used and the body model projected through the field profile with a range of velocities. The simulation shows that it possible to induce electric fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are extrapolated to very high field strengths and tabulated data shows the expected induced currents and fields with both movement velocity and field strength. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
OBJECTIVES We sought to determine whether the transmural extent of scar (TES) explains discordances between dobutamine echocardiography (DbE) and thallium single-photon emission computed tomography (Tl-SPECT) in the detection of viable myocardium (VM). BACKGROUND Discrepancies between DbE and Tl-SPECT are often attributed to differences between contractile reserve and membrane integrity, but may also reflect a disproportionate influence of nontransmural scar on thickening at DbE. METHODS Sixty patients (age 62 +/- 12 years; 10 women and 50 men) with postinfarction left ventricular dysfunction underwent standard rest-late redistribution Tl-SPECT and DbE. Viable myocardium was identified when dysfunctional segments showed Tl activity >60% on the late-redistribution image or by low-dose augmentation at DbE. Contrast-enhanced magnetic resonance imaging (ceMRI) was used to divide TES into five groups: 0%, 75% of the wall thickness replaced by scar. RESULTS As TES increased, both the mean Tl uptake and change in wall motion score decreased significantly (both p < 0.001). However, the presence of subendocardial scar was insufficient to prevent thickening; >50% of segments still showed contractile function with TES of 25% to 75%, although residual function was uncommon with TES >75%. The relationship of both tests to increasing TES was similar, but Tl-SPECT identified VM more frequently than DbE in all groups. Among segments without scar or with small amounts of scar (50% were viable by SPECT. CONCLUSIONS Both contractile reserve and perfusion are sensitive to the extent of scar. However, contractile reserve may be impaired in the face of no or minor scar, and thickening may still occur with extensive scar. (C) 2004 by the American College of Cardiology Foundation.
Resumo:
Background: Postsystolic thickening (PST) of ischemic myocardial segments has been reported to account for the characteristic heterogeneity or regional asynchrony of myocardial wall motion during acute ischemia. Hypothesis: Postsystolic thickening detected by Doppler myocardial imaging (DMI) could be a useful clinical index of myocardial viability or peri-infarction viability in patients with myocardial infarction (MI). Methods: Doppler myocardial imaging was recorded at each stage of a standard dobutamine stress echocardiogram (DSE) in 20 patients (16 male, 60 +/- 13 years) with an NIT in the territory of the left anterior descending artery. Myocardial velocity data were measured in the interventricular septum and apical inferior segment of the MI territory. Postsystolic thickening was identified if the absolute velocity of PST was higher than peak systolic velocity in the presence of either a resting PST > 2.0 cm/s or if PST doubled at low-dose dobutamine infusion. Results: Doppler myocardial imaging data could be analyzed in 38 ischemic segments (95%), and PST was observed in 21 segments (55%), including 3 segments showing PST only at low-dose dobutamine infusion. There was no significant difference of baseline wall motion score index (2.1 +/- 0.3 vs. 2.1 +/- 0.6, p = 0.77) or peak systolic velocity (1.1 +/- 1.1 vs. 1.9 +/- 2.0 cm/s, p = 0.05) between segments with and without PST Peri-infarction ischemia or viability during DSE was more frequently observed in segments with PST than in those without (86 vs. 24%, p < 0.05). The sensitivity and specificity of PST for prediction of peri-infarction viability or ischemia was 82 and 81%, respectively. Conclusions: Postsystolic thickening in the infarct territory detected by DMI is closely related with peri-infarction ischemia or viability at DSE.
Resumo:
The extent of abnormality in patients with positive do-butamine echocardiography (DE) is predictive of risk, but the wall motion score (WMS) has low concordance among observers. We sought whether quantifying the extent of abnormal wall motion using tissue Doppler (TD) could guide risk assessment in patients with abnormal DE in 576 patients with known or suspected coronary artery disease; standard DE was combined with color TD imaging at peak dose. WMS was assessed by an expert observer and studies were identified as abnormal in the presence of 2:1 segments with resting or stress-induced wall motion abnormalities. Patients with abnormal DE had peak systolic velocity measured in each segment. Tissue tracking was used to measure myocardial displacement. Follow-up for death or infarction was per-formed after. 16 +/- 12 months. Of 251 patients with abnormal DE, 22 patients died (20 from cardiac causes) and 7 had nonfatal myocardial infarctionis. The average WMS in patients with events was 1.8 +/- 0.5, compared with 1.7 +/- 0.5 in patients without events (p = NS). The average systolic velocity in patients with events was 4.9 +/- 1.7 cm/s and 6.4 +/- 6.5 cm/s in the patients without events (p <0.001). The average tissue tracking in patients with events was 4.5 +/- 1.5 mm and was significant. (5.7 +/- 3.1 mm),in those,without events (p <0.001). Thus, TD is an alternative to WMS for quantifying the total extent of abnormal left ventricular function-at DE, and appears to be superior for predicting adverse outcomes. (C) 2004 by Excerpta Medica, Inc.
Resumo:
To study the dynamics of protein recruitment to DNA lesions, ion beams can be used to generate extremely localized DNA damage within restricted regions of the nuclei. This inhomogeneous spatial distribution of lesions can be visualized indirectly and rapidly in the form of radiation-induced foci using immunocytochemical detection or GFP-tagged DNA repair proteins. To analyze faster protein translocations and a possible contribution of radiation-induced chromatin movement in DNA damage recognition in live cells, we developed a remote-controlled system to obtain high-resolution fluorescence images of living cells during ion irradiation with a frame rate of the order of seconds. Using scratch replication labeling, only minor chromatin movement at sites of ion traversal was observed within the first few minutes of impact. Furthermore, time-lapse images of the GFP-coupled DNA repair protein aprataxin revealed accumulations within seconds at sites of ion hits, indicating a very fast recruitment to damaged sites. Repositioning of the irradiated cells after fixation allowed the comparison of live cell observation with immunocytochemical staining and retrospective etching of ion tracks. These results demonstrate that heavy-ion radiation-induced changes in sub-nuclear structures can be used to determine the kinetics of early protein recruitment in living cells and that the changes are not dependent on large-scale chromatin movement at short times postirradiation. © 2005 by Radiation Research Society.
Resumo:
In modern magnetic resonance imaging, both patients and health care workers are exposed to strong. non-uniform static magnetic fields inside and outside of the scanner. In which body movement may be able to induce electric currents in tissues which could be potentially harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in a tissue-equivalent human model when moving at various positions around the magnet. The numerical calculations are based on an efficient. quasi-static, finite-difference scheme. Three-dimensional field profiles from an actively shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The methodology presented herein can be extrapolated to very high field strengths for the evaluation of the effects of motion at a variety of field strengths and velocities. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes a biventricular model, which couples the electrical and mechanical properties of the heart, and computer simulations of ventricular wall motion and deformation by means of a biventricular model. In the constructed electromechanical model, the mechanical analysis was based on composite material theory and the finite-element method; the propagation of electrical excitation was simulated using an electrical heart model, and the resulting active forces were used to calculate ventricular wall motion. Regional deformation and Lagrangian strain tensors were calculated during the systole phase. Displacements, minimum principal strains and torsion angle were used to describe the motion of the two ventricles. The simulations showed that during the period of systole, (1) the right ventricular free wall moves towards the septum, and at the same time, the base and middle of the free wall move towards the apex, which reduces the volume of the right ventricle; the minimum principle strain (E3) is largest at the apex, then at the middle of the free wall and its direction is in the approximate direction of the epicardial muscle fibres; (2) the base and middle of the left ventricular free wall move towards the apex and the apex remains almost static; the torsion angle is largest at the apex; the minimum principle strain E3 is largest at the apex and its direction on the surface of the middle wall of the left ventricle is roughly in the fibre orientation. These results are in good accordance with results obtained from MR tagging images reported in the literature. This study suggests that such an electromechanical biventricular model has the potential to be used to assess the mechanical function of the two ventricles, and also could improve the accuracy ECG simulation when it is used in heart torso model-based body surface potential simulation studies.
Resumo:
Two-dimensional (2-D) strain (epsilon(2-D)) on the basis of speckle tracking is a new technique for strain measurement. This study sought to validate epsilon(2-D) and tissue velocity imaging (TVI)based strain (epsilon(TVI)) with tagged harmonic-phase (HARP) magnetic resonance imaging (MRI). Thirty patients (mean age. 62 +/- 11 years) with known or suspected ischemic heart disease were evaluated. Wall motion (wall motion score index 1.55 +/- 0.46) was assessed by an expert observer. Three apical images were obtained for longitudinal strain (16 segments) and 3 short-axis images for radial and circumferential strain (18 segments). Radial epsilon(TVI) was obtained in the posterior wall. HARP MRI was used to measure principal strain, expressed as maximal length change in each direction. Values for epsilon(2-D), epsilon(TVI), and HARP MRI were comparable for all 3 strain directions and were reduced in dysfunctional segments. The mean difference and correlation between longitudinal epsilon(2-D) and HARP MRI (2.1 +/- 5.5%, r = 0.51, p < 0.001) were similar to those between longitudinal epsilon(TVI), and HARP MRI (1.1 +/- 6.7%, r = 0.40, p < 0.001). The mean difference and correlation were more favorable between radial epsilon(2-D) and HARP MRI (0.4 +/- 10.2%, r = 0.60, p < 0.001) than between radial epsilon(TVI), and HARP MRI (3.4 +/- 10.5%, r = 0.47, p < 0.001). For circumferential strain, the mean difference and correlation between epsilon(2-D) and HARP MRI were 0.7 +/- 5.4% and r = 0.51 (p < 0.001), respectively. In conclusion, the modest correlations of echocardiographic and HARP MRI strain reflect the technical challenges of the 2 techniques. Nonetheless, epsilon(2-D) provides a reliable tool to quantify regional function, with radial measurements being more accurate and feasible than with TVI. Unlike epsilon(TVI), epsilon(2-D) provides circumferential measurements. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Aims Technological advances in cardiac imaging have led to dramatic increases in test utilization and consumption of a growing proportion of cardiovascular healthcare costs. The opportunity costs of strategies favouring exercise echocardiography or SPECT imaging have been incompletely evaluated. Methods and results We examined prognosis and cost-effectiveness of exercise echocardiography (n=4884) vs. SPECT (n=4637) imaging in stable, intermediate risk, chest pain patients. Ischaemia extent was defined as the number of vascular territories with echocardiographic wall motion or SPECT perfusion abnormalities. Cox proportional hazard models were employed to assess time to cardiac death or myocardial infarction (MI). Total cardiovascular costs were summed (discounted and inflation-corrected) throughout follow-up. A cost-effectiveness ratio = 2% annual event risk), SPECT ischaemia was associated with earlier and greater utilization of coronary revascularization (P < 0.0001) resulting in an incremental cost-effectiveness ratio of $32 381/LYS. Conclusion Health care policies aimed at allocating limited resources can be effectively guided by applying clinical and economic outcomes evidence. A strategy aimed at cost-effective testing would support using echocardiography in low-risk patients with suspected coronary disease, whereas those higher risk patients benefit from referral to SPECT imaging.
Resumo:
Biventdcular (BV) pacing is evaluated as an alternative treatment for patients with dilated cardiomyppathy (both ischemic and non-ischemic) and end-stage heart failure. Colour tissue Doppler imaging using echocardiography allows noninvasive, quantitative assessment of radial motion in the long-axis with measurement of peak systolic velocity timing. The aim of the present study was to evaluate quantitatively, the systolic performance of the left ventricle and the resynchrenization of contraction (before vs after implantation). Patients and methods: 25 patients with dilated cardiomyopathy (11 ischemic), NYHA class III or IV, QRS duration >120 ms received a biventricular pacemaker. Routine 2D echo and colour tissue Doppler imaging were performed before and within 1 week following implantation. LVEF was assessed using the biplane Sampson's method.Peak systolic velocity (PSV) and time to PSV (TPV) were assessed in 4 regions (basal anterior, inferior, lateral and septal). By averaging the TPV from all 4 regions, a synchronization index was dedved from these measurements. Reaults: LVEF improved by 9±9% following pacing; 17 patients improved LVEF 5% or more. The change in PSV in the septal and lateral regions related significantly to the change in LVEF (r=0.74, r=0.62).The change in synchronization index before vs after pacing (as a measurement of REsynchronization) was related to the change in LVEF (y=120x+5.6, r=0.79, P
Resumo:
In modern magnetic resonance imaging (MRI), both patients and radiologists are exposed to strong, nonuniform static magnetic fields inside or outside of the scanner, in which the body movement may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in the human model when moving at various positions around the magnet. The numerical calculations are based on an efficient, quasistatic, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively-shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are easy to extrapolate to very high field strengths for the safety evaluation at a variety of field strengths and motion velocities.
Resumo:
Transmural extent of infarction (TME) may be an important determinant of functional recovery and remodeling. Recent animal data suggest that strain rate imaging (SRI) maybe able to identify subendocardial ischemia.We compared SRI and cyclic variation of integrated backscatter (CVIB) for predicting TME in the quantitative assessment of regional subepicardial function. Forty-nine (n = 49) postmyocardial infarct patients (61±10 years, EF 41±10%) underwent tissue Doppler echocardiography (TDE) and contrast enhanced magnetic resonance imaging (CMR). A15 mm×2mm sampling volume (tracked to wall motion) was placed over the long axis subepicardial region of each segment during TDE offline analysis to measure peak longitudinal systolic strain rate (SR), peak longitudinal systolic strain (PS), and CVIB. Findingswere compared with TME classified into two categories of scar thickness by CMR: Non-transmural (TME≤50%), and transmural (TME > 50%). Of 213 segments identified with resting wall motion abnormalities, 145 segments showed delayed hyperenhancement on CMR. SR, PS and CVIB were similar with no significant differences between transmural and non-transmural infarcts regardless of the echo modality.