7 resultados para Implementation analysis

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate whether relative contributions of genetic and shared environmental factors are associated with an increased risk in melanoma. Data from the Queensland Familial Melanoma Project comprising 15,907 subjects arising from 1912 families were analyzed to estimate the additive genetic, common and unique environmental contributions to variation in the age at onset of melanoma. Two complementary approaches for analyzing correlated time-to-onset family data were considered: the generalized estimating equations (GEE) method in which one can estimate relationship-specific dependence simultaneously with regression coefficients that describe the average population response to changing covariates; and a subject-specific Bayesian mixed model in which heterogeneity in regression parameters is explicitly modeled and the different components of variation may be estimated directly. The proportional hazards and Weibull models were utilized, as both produce natural frameworks for estimating relative risks while adjusting for simultaneous effects of other covariates. A simple Markov Chain Monte Carlo method for covariate imputation of missing data was used and the actual implementation of the Bayesian model was based on Gibbs sampling using the free ware package BUGS. In addition, we also used a Bayesian model to investigate the relative contribution of genetic and environmental effects on the expression of naevi and freckles, which are known risk factors for melanoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advent of molecular markers as a tool to aid selection has provided plant breeders with the opportunity to rapidly deliver superior genetic solutions to problems in agricultural production systems. However, a major constraint to the implementation of marker-assisted selection (MAS) in pragmatic breeding programs in the past has been the perceived high relative cost of MAS compared to conventional phenotypic selection. In this paper, computer simulation was used to design a genetically effective and economically efficient marker-assisted breeding strategy aimed at a specific outcome. Under investigation was a strategy involving the integration of both restricted backcrossing and doubled haploid (DH) technology. The point at which molecular markers are applied in a selection strategy can be critical to the effectiveness and cost efficiency of that strategy. The application of molecular markers was considered at three phases in the strategy: allele enrichment in the BC1F1 population, gene selection at the haploid stage and the selection for recurrent parent background of DHs prior to field testing. Overall, incorporating MAS at all three stages was the most effective, in terms of delivering a high frequency of desired outcomes and at combining the selected favourable rust resistance, end use quality and grain yield alleles. However, when costs were included in the model the combination of MAS at the BC1F1 and haploid stage was identified as the optimal strategy. A detailed economic analysis showed that incorporation of marker selection at these two stages not only increased genetic gain over the phenotypic alternative but actually reduced the over all cost by 40%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pharmacogenomics promotes an understanding of the genetic basis for differences in efficacy or toxicity of drugs in different individuals. Implementation of the outcomes of pharmacogenomic research into clinical practice presents a number of difficulties for healthcare. This paper aims to highlight one of the Unique ethical challenges which pharmacogenomics presents for the utilisation of cost-effectiveness analysis by public health systems. This paper contends that pharmacogenomics provides a challenge to fundamental principles which underlie most systems for deciding which drugs should be publicly subsidised. Pharmacogenomics brings into focus the conflict between equality and utility in the context of using cost-effectiveness analysis to aid distribution of a limited national drug budget.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foreign exchange trading has emerged in recent times as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process is very helpful. In this paper, we try to create such a system with a genetic algorithm engine to emulate trader behaviour on the foreign exchange market and to find the most profitable trading strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software simulation models are computer programs that need to be verified and debugged like any other software. In previous work, a method for error isolation in simulation models has been proposed. The method relies on a set of feature matrices that can be used to determine which part of the model implementation is responsible for deviations in the output of the model. Currrently these feature matrices have to be generated by hand from the model implementation, which is a tedious and error-prone task. In this paper, a method based on mutation analysis, as well as prototype tool support for the verification of the manually generated feature matrices is presented. The application of the method and tool to a model for wastewater treatment shows that the feature matrices can be verified effectively using a minimal number of mutants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The software implementation of the emergency shutdown feature in a major radiotherapy system was analyzed, using a directed form of code review based on module dependences. Dependences between modules are labelled by particular assumptions; this allows one to trace through the code, and identify those fragments responsible for critical features. An `assumption tree' is constructed in parallel, showing the assumptions which each module makes about others. The root of the assumption tree is the critical feature of interest, and its leaves represent assumptions which, if not valid, might cause the critical feature to fail. The analysis revealed some unexpected assumptions that motivated improvements to the code.