225 resultados para Impedance Control
em University of Queensland eSpace - Australia
Resumo:
To investigate the control mechanisms used in adapting to position-dependent forces, subjects performed 150 horizontal reaching movements over 25 cm in the presence of a position-dependent parabolic force field (PF). The PF acted only over the first 10 cm of the movement. On every fifth trial, a virtual mechanical guide (double wall) constrained subjects to move along a straight-line path between the start and target positions. Its purpose was to register lateral force to track formation of an internal model of the force field, and to look for evidence of possible alternative adaptive strategies. The force field produced a force to the right, which initially caused subjects to deviate in that direction. They reacted by producing deviations to the left, into the force field, as early as the second trial. Further adaptation resulted in rapid exponential reduction of kinematic error in the latter portion of the movement, where the greatest perturbation to the handpath was initially observed, whereas there was little modification of the handpath in the region where the PF was active. Significant force directed to counteract the PF was measured on the first guided trial, and was modified during the first half of the learning set. The total force impulse in the region of the PF increased throughout the learning trials, but it always remained less than that produced by the PF. The force profile did not resemble a mirror image of the PF in that it tended to be more trapezoidal than parabolic in shape. As in previous studies of force-field adaptation, we found that changes in muscle activation involved a general increase in the activity of all muscles, which increased arm stiffness, and selectively-greater increases in the activation of muscles which counteracted the PF. With training, activation was exponentially reduced, albeit more slowly than kinematic error. Progressive changes in kinematics and EMG occurred predominantly in the region of the workspace beyond the force field. We suggest that constraints on muscle mechanics limit the ability of the central nervous system to employ an inverse dynamics model to nullify impulse-like forces by generating mirror-image forces. Consequently, subjects adopted a strategy of slightly overcompensating for the first half of the force field, then allowing the force field to push them in the opposite direction. Muscle activity patterns in the region beyond the boundary of the force field were subsequently adjusted because of the relatively-slow response of the second-order mechanics of muscle impedance to the force impulse.
Resumo:
This study investigated how movement error is evaluated and used to change feedforward commands following a change in the environmental dynamics. In particular, we addressed the question of whether only position-error information is used or whether information about the force-field direction can also be used for rapid adaptation to changes in the environmental dynamics. Subjects learned to move in a position-dependent force field (PF) with a parabolic profile and the dynamics of a negative spring, which produced lateral force to the left of the target hand path. They adapted very rapidly, dramatically reducing lateral error after a single trial. Several times during training, the strength of the PF was unexpectedly doubled (PF2) for two trials. This again created a large leftward deviation, which was greatly reduced on the second PF2 trial, and an aftereffect when the force field subsequently returned to its original strength. The aftereffect was abolished if the second PF2 trial was replaced by an oppositely directed velocity-dependent force field (VF). During subsequent training in the VF, immediately after having adapted to the PF, subjects applied a force that assisted the force field for similar to 15 trials, indicating that they did not use information about the force-field direction. We concluded that the CNS uses only the position error for updating the internal model of the environmental dynamics and modifying feedforward commands. Although this strategy is not necessarily optimal, it may be the most reliable strategy for iterative improvement in performance.
Resumo:
The optimum bandwidth for shallow, high-resolution seismic reflection differs from that required for conventional petroleum reflection. An understanding of this issue is essential for correct choice of acquisition instrumentation. Numerical modelling of simple Bowen Basin coal structures illustrates that, for high-resolution imaging, it is important to accurately record all frequencies up to the limit imposed by earth scattering. On the contrary, the seismic image is much less dependent on frequencies at the lower end of the spectrum. These quantitative observations support the use of specialised high-frequency geophones for high-resolution seismic imaging. Synthetic seismic inversion trials demonstrate that, irrespective of the bandwidth of the seismic data, additional low-frequency impedance control is essential for accurate inversion. Inversion provides no compelling argument for the use of conventional petroleum geophones in the high-resolution arena.
Resumo:
Estimation of total body water by measuring bioelectrical impedance at a fixed frequency of 50 kHz is useful in assessing body composition in healthy populations. However, in cirrhosis, the distribution of total body water between the extracellular and intracellular compartments is of greater clinical importance. We report an evaluation of a new multiple-frequency bioelectrical-impedance analysis technique (MFBIA) that may quantify the distribution of total body water in cirrhosis. In 21 cirrhotic patients and 21 healthy control subjects, impedance to the Row of current was measured at frequencies ranging from 4 to 1012 kHz. These measurements were used to estimate body water compartments and then compared with total body water and extracellular water determined by isotope methodology. In cirrhotic patients, extracellular water and total body water (as determined by isotope methods) were well predicted by MFBIA (r = 0.73 and 0.89, respectively).;However, the 95% confidence intervals of the limits of agreement between MFBIA and the isotope methods were +/- 14% and +/-9% for cirrhotics (extracellular water and total body water, respectively) and +/-9% and +/-9% for cirrhotics without ascites. The 95% confidence intervals estimated from the control group were +/-10% and +/-5% for extracellular water and total body water, respectively. Thus, despite strong correlations between MFBIA and isotope measurements, the relatively large limits of agreement with accepted techniques suggest that the MFBIA technique requires further refinement before it can be routinely used to determine the nutritional assessment of individual cirrhotic patients. Nutrition 2001,17.31-34. (C)Elsevier Science Inc. 2001.
Resumo:
Conventional whole-body single frequency bioelectrical impedance analysis (BIA) of body composition typically uses height as a surrogate measure of conductor length. A new method of BIA analysis for the prediction of body cell mass (BCM) and extracellular water (ECW, as % body weight) not using height has been introduced-the Soft Tissue Analyser (STA(TM), Akern Sri, Florence, Italy)-making it ideal for use in subjects where measurement of height is difficult or impossible. The performance of the new analytical method in predicting BCM and ECW in 139 normal control subjects was assessed by comparison with reference data obtained from a four-component (4-C) model of body composition and with predictions obtained from conventional BIA analysis. Both predicted BCM and ECW were strongly (r = 0.82, SEE = 6.3 kg and 0.89, SEE = 1.3 kg respectively) correlated with the corresponding 4-C model measurements although differing significantly from the lines of identity (P < 0.0001). Fat-free mass, calculated from STA estimates of BCM and ECW, was better predicted (r = 0.91, SEE = 5.6 kg). The significant differences in STA-group mean values for BCM and ECW and wide limits of agreement compared with the reference data indicate that the method cannot be used with confidence for prediction of these body compartments despite the obvious advantage of not requiring an accurate measurement of height. (C) 2001 Harcourt Publishers Ltd.
Resumo:
Study Design. A multicenter, randomized controlled trial with unblinded treatment and blinded outcome assessment was conducted. The treatment period was 6 weeks with follow-up assessment after treatment, then at 3, 6, and 12 months. Objectives. To determine the effectiveness of manipulative therapy and a low-load exercise program for cervicogenic headache when used alone and in combination, as compared with a control group. Summary of Background Data. Headaches arising from cervical musculoskeletal disorders are common. Conservative therapies are recommended as the first treatment of choice. Evidence for the effectiveness of manipulative therapy is inconclusive and available only for the short term. There is no evidence for exercise, and no study has investigated the effect of combined therapies for cervicogenic headache. Methods. In this study, 200 participants who met the diagnostic criteria for cervicogenic headache were randomized into four groups: manipulative therapy group, exercise therapy group, combined therapy group, and a control group. The primary outcome was a change in headache frequency. Other outcomes included changes in headache intensity and duration, the Northwick Park Neck Pain Index, medication intake, and patient satisfaction. Physical outcomes included pain on neck movement, upper cervical joint tenderness, a craniocervical flexion muscle test, and a photographic measure of posture. Results. There were no differences in headache-related and demographic characteristics between the groups at baseline. The loss to follow-up evaluation was 3.5%. At the 12-month follow-up assessment, both manipulative therapy and specific exercise had significantly reduced headache frequency and intensity, and the neck pain and effects were maintained (P < 0.05 for all). The combined therapies was not significantly superior to either therapy alone, but 10% more patients gained relief with the combination. Effect sizes were at least moderate and clinically relevant. Conclusion. Manipulative therapy and exercise can reduce the symptoms of cervicogenic headache, and the effects are maintained.
Resumo:
This paper identifies research priorities in evaluating the ways in which "genomic medicine"-the use of genetic information to prevent and treat disease-may reduce tobacco-related harm by: (1) assisting more smokers to quit; (2) preventing non-smokers from beginning to smoke tobacco; and (3) reducing the harm caused by tobacco smoking. The method proposed to achieve the first aim is pharmacogenetics", the use of genetic information to optimise the selection of smoking-cessation programmes by screening smokers for polymorphisms that predict responses to different methods of smoking cessation. This method competes with the development of more effective forms of smoking cessation that involve vaccinating smokers against the effects of nicotine and using new pharmaceuticals (such as cannabinoid antagonists and nicotine agonists). The second and third aims are more speculative. They include: screening the population for genetic susceptibility to nicotine dependence and intervening (eg, by vaccinating children and adolescents against the effects of nicotine) to prevent smoking uptake, and screening the population for genetic susceptibility to tobacco-related diseases. A framework is described for future research on these policy options. This includes: epidemiological modelling and economic evaluation to specify the conditions under which these strategies are cost-effective; and social psychological research into the effect of providing genetic information on smokers' preparedness to quit, and the general views of the public on tobacco smoking.
Resumo:
Some motor tasks can be completed, quite literally, with our eyes shut. Most people can touch their nose without looking or reach for an object after only a brief glance at its location. This distinction leads to one of the defining questions of movement control: is information gleaned prior to starting the movement sufficient to complete the task (open loop), or is feedback about the progress of the movement required (closed loop)? One task that has commanded considerable interest in the literature over the years is that of steering a vehicle, in particular lane-correction and lane-changing tasks. Recent work has suggested that this type of task can proceed in a fundamentally open loop manner [1 and 2], with feedback mainly serving to correct minor, accumulating errors. This paper reevaluates the conclusions of these studies by conducting a new set of experiments in a driving simulator. We demonstrate that, in fact, drivers rely on regular visual feedback, even during the well-practiced steering task of lane changing. Without feedback, drivers fail to initiate the return phase of the maneuver, resulting in systematic errors in final heading. The results provide new insight into the control of vehicle heading, suggesting that drivers employ a simple policy of “turn and see,” with only limited understanding of the relationship between steering angle and vehicle heading.
Resumo:
Age is a critical determinant of the ability of most arthropod vectors to transmit a range of human pathogens. This is due to the fact that most pathogens require a period of extrinsic incubation in the arthropod host before pathogen transmission can occur. This developmental period for the pathogen often comprises a significant proportion of the expected lifespan of the vector. As such, only a small proportion of the population that is oldest contributes to pathogen transmission. Given this, strategies that target vector age would be expected to obtain the most significant reductions in the capacity of a vector population to transmit disease. The recent identification of biological agents that shorten vector lifespan, such as Wolbachia, entomopathogenic fungi and densoviruses, offer new tools for the control of vector-borne diseases. Evaluation of the efficacy of these strategies under field conditions will be possible due to recent advances in insect age-grading techniques. Implementation of all of these strategies will require extensive field evaluation and consideration of the selective pressures that reductions in vector longevity may induce on both vector and pathogen.
Resumo:
The National Health and Medical Research Council has funded Professor Wayne Hall (University of Queensland) and Professor Simon Chapman (University of Sydney) for three years 2006-2008, to research aspects of the future of tobacco control, particularly in nations with advanced tobacco control programs like Australia. Dr Coral Gartner (UQ) and Ms Becky Freeman (USyd) are also working on the project. The University of Queensland's eSpace site provides links to papers and data appendices produced by the University of Queensland team on the project. Materials relevant to this project produced by the University of Sydney group are available at the link provided.
Resumo:
The extensive antigenic variation phenomena African trypanosomes display in their mammalian host have hampered efforts to develop effective vaccines against trypanosomiasis. Human disease management aims largely to treat infected hosts by chemotherapy, whereas control of animal diseases relies on reducing tsetse populations as well as on drug therapy. The control strategies for animal diseases are carried out and financed by livestock owners, who have an obvious economic incentive. Sustaining largely insecticide-based control at a local level and relying on drugs for treatment of infected hosts for a disease for which there is no evidence of acquired immunity could prove extremely costly in the long run. It is more likely that a combination of several methods in an integrated, phased and area-wide approach would be more effective in controlling these diseases and subsequently improving agricultural output. New approaches that are environmentally acceptable, efficacious and affordable are clearly desirable for control of various medically and agriculturally important insects including tsetse. Here, Serap Aksoy and colleagues discuss molecular genetic approaches to modulate tsetse vector competence.
Resumo:
The possibility of controlling vector-borne disease through the development and release of transgenic insect vectors has recently gained popular support and is being actively pursued by a number of research laboratories around the world. Several technical problems must be solved before such a strategy could be implemented: genes encoding refractory traits (traits that render the insect unable to transmit the pathogen) must be identified, a transformation system for important vector species has to be developed, and a strategy to spread the refractory trait into natural vector populations must be designed. Recent advances in this field of research make it seem likely that this technology will be available in the near future. In this paper we review recent progress in this area as well as argue that care should be taken in selecting the most appropriate disease system with which to first attempt this form of intervention. Much attention is currently being given to the application of this technology to the control of malaria, transmitted by Anopheles gambiae in Africa. While malaria is undoubtedly the most important vector-borne disease in the world and its control should remain an important goal, we maintain that the complex epidemiology of malaria together with the intense transmission rates in Africa may make it unsuitable for the first application of this technology. Diseases such as African trypanosomiasis, transmitted by the tsetse fly, or unstable malaria in India may provide more appropriate initial targets to evaluate the potential of this form of intervention.
Resumo:
Power system real time security assessment is one of the fundamental modules of the electricity markets. Typically, when a contingency occurs, it is required that security assessment and enhancement module shall be ready for action within about 20 minutes’ time to meet the real time requirement. The recent California black out again highlighted the importance of system security. This paper proposed an approach for power system security assessment and enhancement based on the information provided from the pre-defined system parameter space. The proposed scheme opens up an efficient way for real time security assessment and enhancement in a competitive electricity market for single contingency case
Resumo:
Little is known about factors effecting plant growth at high pH, with research often limited by the inability to separate nutritional deficiencies and HCO3- toxicity from the direct limitations imposed under high pH conditions. Various methods of controlling dilute nutrient solutions for studies at high pH were investigated. For short-term studies, it was found that a solution without Cu, Fe, Mn and Zn and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. However, pH control by automated titration had little effect on solution composition while maintaining constant pH. The system described is suitable for studies in which the pH of the bulk nutrient solution must be maintained. The system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater.