4 resultados para Immunoinformatics
em University of Queensland eSpace - Australia
Resumo:
Promiscuous T-cell epitopes make ideal targets for vaccine development. We report here a computational system, multipred, for the prediction of peptide binding to the HLA-A2 supertype. It combines a novel representation of peptide/MHC interactions with a hidden Markov model as the prediction algorithm. multipred is both sensitive and specific, and demonstrates high accuracy of peptide-binding predictions for HLA-A*0201, *0204, and *0205 alleles, good accuracy for *0206 allele, and marginal accuracy for *0203 allele. multipred replaces earlier requirements for individual prediction models for each HLA allelic variant and simplifies computational aspects of peptide-binding prediction. Preliminary testing indicates that multipred can predict peptide binding to HLA-A2 supertype molecules with high accuracy, including those allelic variants for which no experimental binding data are currently available.
Resumo:
Vaccinology is a combinatorial science which studies the diversity of pathogens and the human immune system, and formulations that can modulate immune responses and prevent or cure disease. Huge amounts of data are produced by genomics and proteomics projects and large-scale screening of pathogen-host and antigen-host interactions. Current developments in computational vaccinology mainly support the analysis of antigen processing and presentation and the characterization of targets of immune response. Future development will also include systemic models of vaccine responses. Immunomics, the large-scale screening of immune processes which includes powerful immunoinformatic tools, offers great promise for future translation of basic immunology research advances into successful vaccines.
Resumo:
Candida albicans is a pathogen commonly infecting patients who receive immunosuppressive drug therapy, long-term catheterization, or those who suffer from acquired immune deficiency syndrome (AIDS). The major factor accountable for pathogenicity of C. albicans is host immune status. Various virulence molecules, or factors, of are also responsible for the disease progression. Virulence proteins are published in public databases but they normally lack detailed functional annotations. We have developed CandiVF, a specialized database of C. albicans virulence factors (http://antigen.i2r.a-star.edu.sg/Templar/DB/CandiVF/) to facilitate efficient extraction and analysis of data aimed to assist research on immune responses, pathogenesis, prevention, and control of candidiasis. CandiVF contains a large number of annotated virulence proteins, including secretory, cell wall-associated, membrane, cytoplasmic, and nuclear proteins. This database has in-built bioinformatics tools including keyword and BLAST search, visualization of 3D-structures, HLA-DR epitope prediction, virulence descriptors, and virulence factors ontology.