56 resultados para Image classification
em University of Queensland eSpace - Australia
Resumo:
This paper presents a neural network based technique for the classification of segments of road images into cracks and normal images. The density and histogram features are extracted. The features are passed to a neural network for the classification of images into images with and without cracks. Once images are classified into cracks and non-cracks, they are passed to another neural network for the classification of a crack type after segmentation. Some experiments were conducted and promising results were obtained. The selected results and a comparative analysis are included in this paper.
Resumo:
Land related information about the Earth's surface is commonIJ found in two forms: (1) map infornlation and (2) satellite image da ta. Satellite imagery provides a good visual picture of what is on the ground but complex image processing is required to interpret features in an image scene. Increasingly, methods are being sought to integrate the knowledge embodied in mop information into the interpretation task, or, alternatively, to bypass interpretation and perform biophysical modeling directly on derived data sources. A cartographic modeling language, as a generic map analysis package, is suggested as a means to integrate geographical knowledge and imagery in a process-oriented view of the Earth. Specialized cartographic models may be developed by users, which incorporate mapping information in performing land classification. In addition, a cartographic modeling language may be enhanced with operators suited to processing remotely sensed imagery. We demonstrate the usefulness of a cartographic modeling language for pre-processing satellite imagery, and define two nerv cartographic operators that evaluate image neighborhoods as post-processing operations to interpret thematic map values. The language and operators are demonstrated with an example image classification task.
Resumo:
Understanding the ecological role of benthic microalgae, a highly productive component of coral reef ecosystems, requires information on their spatial distribution. The spatial extent of benthic microalgae on Heron Reef (southern Great Barrier Reef, Australia) was mapped using data from the Landsat 5 Thematic Mapper sensor. integrated with field measurements of sediment chlorophyll concentration and reflectance. Field-measured sediment chlorophyll concentrations. 2 ranging from 23-1.153 mg chl a m(2), were classified into low, medium, and high concentration classes (1-170, 171-290, and > 291 mg chl a m(-2)) using a K-means clustering algorithm. The mapping process assumed that areas in the Thematic Mapper image exhibiting similar reflectance levels in red and blue bands would correspond to areas of similar chlorophyll a levels. Regions of homogenous reflectance values corresponding to low, medium, and high chlorophyll levels were identified over the reef sediment zone by applying a standard image classification algorithm to the Thematic Mapper image. The resulting distribution map revealed large-scale ( > 1 km 2) patterns in chlorophyll a levels throughout the sediment zone of Heron Reef. Reef-wide estimates of chlorophyll a distribution indicate that benthic Microalgae may constitute up to 20% of the total benthic chlorophyll a at Heron Reef. and thus contribute significantly to total primary productivity on the reef.
Resumo:
The majority of the world's population now resides in urban environments and information on the internal composition and dynamics of these environments is essential to enable preservation of certain standards of living. Remotely sensed data, especially the global coverage of moderate spatial resolution satellites such as Landsat, Indian Resource Satellite and Systeme Pour I'Observation de la Terre (SPOT), offer a highly useful data source for mapping the composition of these cities and examining their changes over time. The utility and range of applications for remotely sensed data in urban environments could be improved with a more appropriate conceptual model relating urban environments to the sampling resolutions of imaging sensors and processing routines. Hence, the aim of this work was to take the Vegetation-Impervious surface-Soil (VIS) model of urban composition and match it with the most appropriate image processing methodology to deliver information on VIS composition for urban environments. Several approaches were evaluated for mapping the urban composition of Brisbane city (south-cast Queensland, Australia) using Landsat 5 Thematic Mapper data and 1:5000 aerial photographs. The methods evaluated were: image classification; interpretation of aerial photographs; and constrained linear mixture analysis. Over 900 reference sample points on four transects were extracted from the aerial photographs and used as a basis to check output of the classification and mixture analysis. Distinctive zonations of VIS related to urban composition were found in the per-pixel classification and aggregated air-photo interpretation; however, significant spectral confusion also resulted between classes. In contrast, the VIS fraction images produced from the mixture analysis enabled distinctive densities of commercial, industrial and residential zones within the city to be clearly defined, based on their relative amount of vegetation cover. The soil fraction image served as an index for areas being (re)developed. The logical match of a low (L)-resolution, spectral mixture analysis approach with the moderate spatial resolution image data, ensured the processing model matched the spectrally heterogeneous nature of the urban environments at the scale of Landsat Thematic Mapper data.
Resumo:
Background Schizophrenia has been associated with semantic memory impairment and previous studies report a difficulty in accessing semantic category exemplars (Moelter et al. 2005 Schizophr Res 78:209–217). The anterior temporal cortex (ATC) has been implicated in the representation of semantic knowledge (Rogers et al. 2004 Psychol Rev 111(1):205–235). We conducted a high-field (4T) fMRI study with the Category Judgment and Substitution Task (CJAST), an analogue of the Hayling test. We hypothesised that differential activation of the temporal lobe would be observed in schizophrenia patients versus controls. Methods Eight schizophrenia patients (7M : 1F) and eight matched controls performed the CJAST, involving a randomised series of 55 common nouns (from five semantic categories) across three conditions: semantic categorisation, anomalous categorisation and word reading. High-resolution 3D T1-weighted images and GE EPI with BOLD contrast and sparse temporal sampling were acquired on a 4T Bruker MedSpec system. Image processing and analyses were performed with SPM2. Results Differential activation in the left ATC was found for anomalous categorisation relative to category judgment, in patients versus controls. Conclusions We examined semantic memory deficits in schizophrenia using a novel fMRI task. Since the ATC corresponds to an area involved in accessing abstract semantic representations (Moelter et al. 2005), these results suggest schizophrenia patients utilise the same neural network as healthy controls, however it is compromised in the patients and the different ATC activity might be attributable to weakening of category-to-category associations.
Resumo:
The collection of spatial information to quantify changes to the state and condition of the environment is a fundamental component of conservation or sustainable utilization of tropical and subtropical forests, Age is an important structural attribute of old-growth forests influencing biological diversity in Australia eucalypt forests. Aerial photograph interpretation has traditionally been used for mapping the age and structure of forest stands. However this method is subjective and is not able to accurately capture fine to landscape scale variation necessary for ecological studies. Identification and mapping of fine to landscape scale vegetative structural attributes will allow the compilation of information associated with Montreal Process indicators lb and ld, which seek to determine linkages between age structure and the diversity and abundance of forest fauna populations. This project integrated measurements of structural attributes derived from a canopy-height elevation model with results from a geometrical-optical/spectral mixture analysis model to map forest age structure at a landscape scale. The availability of multiple-scale data allows the transfer of high-resolution attributes to landscape scale monitoring. Multispectral image data were obtained from a DMSV (Digital Multi-Spectral Video) sensor over St Mary's State Forest in Southeast Queensland, Australia. Local scene variance levels for different forest tapes calculated from the DMSV data were used to optimize the tree density and canopy size output in a geometric-optical model applied to a Landsat Thematic Mapper (TU) data set. Airborne laser scanner data obtained over the project area were used to calibrate a digital filter to extract tree heights from a digital elevation model that was derived from scanned colour stereopairs. The modelled estimates of tree height, crown size, and tree density were used to produce a decision-tree classification of forest successional stage at a landscape scale. The results obtained (72% accuracy), were limited in validation, but demonstrate potential for using the multi-scale methodology to provide spatial information for forestry policy objectives (ie., monitoring forest age structure).
Resumo:
A detailed analysis procedure is described for evaluating rates of volumetric change in brain structures based on structural magnetic resonance (MR) images. In this procedure, a series of image processing tools have been employed to address the problems encountered in measuring rates of change based on structural MR images. These tools include an algorithm for intensity non-uniforniity correction, a robust algorithm for three-dimensional image registration with sub-voxel precision and an algorithm for brain tissue segmentation. However, a unique feature in the procedure is the use of a fractional volume model that has been developed to provide a quantitative measure for the partial volume effect. With this model, the fractional constituent tissue volumes are evaluated for voxels at the tissue boundary that manifest partial volume effect, thus allowing tissue boundaries be defined at a sub-voxel level and in an automated fashion. Validation studies are presented on key algorithms including segmentation and registration. An overall assessment of the method is provided through the evaluation of the rates of brain atrophy in a group of normal elderly subjects for which the rate of brain atrophy due to normal aging is predictably small. An application of the method is given in Part 11 where the rates of brain atrophy in various brain regions are studied in relation to normal aging and Alzheimer's disease. (C) 2002 Elsevier Science Inc. All rights reserved.
Terrain classification based on markov random field texture modeling of SAR and SAR coherency images
Resumo:
This paper considers the problem of tissue classification in 3D MRI. More specifically, a new set of texture features, based on phase information, is used to perform the segmentation of the bones of the knee. The phase information provides a very good discrimination between the bone and the surrounding tissues, but is usually not used due to phase unwrapping problems. We present a method to extract textural information from the phase that does not require phase unwrapping. The textural information extracted from the magnitude and the phase can be combined to perform tissue classification, and used to initialise an active shape model, leading to a more precise segmentation.
Resumo:
Developing a unified classification system to replace four of the systems currently used in disability athletics (i.e., track and field) has been widely advocated. The diverse impairments to be included in a unified system require severed assessment methods, results of which cannot be meaningfully compared. Therefore, the taxonomic basis of current classification systems is invalid in a unified system. Biomechanical analysis establishes that force, a vector described in terms of magnitude and direction, is a key determinant of success in all athletic disciplines. It is posited that all impairments to be included in a unified system may be classified as either force magnitude impairments (FMI) or force control impairments (FCI). This framework would provide a valid taxonomic basis for a unified system, creating the opportunity to decrease the number of classes and enhance the viability of disability athletics.
Resumo:
Using Landsat imagery, forest canopy density (FCD) estimated with the FCD Mapper®, was correlated with predominant height (PDH, measured as the average height of the tallest 50 trees per hectare) for 20 field plots measured in native forest at Noosa Heads, south-east Queensland, Australia. A corresponding image was used to calculate FCD in Leyte Island, the Philippines and was validated on the ground for accuracy. The FCD Mapper was produced for the International Tropical Timber Organisation and estimates FCD as an index of canopy density using reflectance characteristics of Landsat Enhanced Thematic (ETM) Mapper images. The FCD Mapper is a ‘semi-expert’ computer program which uses interactive screens to allow the operator to make decisions concerning the classification of land into bare soil, grass and forest. At Noosa, a positive strong nonlinear relationship (r2 = 0.86) was found between FCD and PDH for 15 field plots with variable PDH but complete canopy closure. An additional five field plots were measured in forest with a broken canopy and the software assessed these plots as having a much lower FCD than forest with canopy closure. FCD estimates for forest and agricultural land in the island of Leyte and subsequent field validation showed that at appropriate settings, the FCD Mapper differentiated between tropical rainforest and banana or coconut plantation. These findings suggest that in forests with a closed canopy this remote sensing technique has promise for forest inventory and productivity assessment. The findings also suggest that the software has promise for discriminating between native forest with a complete canopy and forest which has a broken canopy, such as coconut or banana plantation.