46 resultados para Image Processing, Visual Prostheses, Visual Information, Artificial Human Vision, Visual Perception
em University of Queensland eSpace - Australia
Resumo:
The majority of the world's population now resides in urban environments and information on the internal composition and dynamics of these environments is essential to enable preservation of certain standards of living. Remotely sensed data, especially the global coverage of moderate spatial resolution satellites such as Landsat, Indian Resource Satellite and Systeme Pour I'Observation de la Terre (SPOT), offer a highly useful data source for mapping the composition of these cities and examining their changes over time. The utility and range of applications for remotely sensed data in urban environments could be improved with a more appropriate conceptual model relating urban environments to the sampling resolutions of imaging sensors and processing routines. Hence, the aim of this work was to take the Vegetation-Impervious surface-Soil (VIS) model of urban composition and match it with the most appropriate image processing methodology to deliver information on VIS composition for urban environments. Several approaches were evaluated for mapping the urban composition of Brisbane city (south-cast Queensland, Australia) using Landsat 5 Thematic Mapper data and 1:5000 aerial photographs. The methods evaluated were: image classification; interpretation of aerial photographs; and constrained linear mixture analysis. Over 900 reference sample points on four transects were extracted from the aerial photographs and used as a basis to check output of the classification and mixture analysis. Distinctive zonations of VIS related to urban composition were found in the per-pixel classification and aggregated air-photo interpretation; however, significant spectral confusion also resulted between classes. In contrast, the VIS fraction images produced from the mixture analysis enabled distinctive densities of commercial, industrial and residential zones within the city to be clearly defined, based on their relative amount of vegetation cover. The soil fraction image served as an index for areas being (re)developed. The logical match of a low (L)-resolution, spectral mixture analysis approach with the moderate spatial resolution image data, ensured the processing model matched the spectrally heterogeneous nature of the urban environments at the scale of Landsat Thematic Mapper data.
Resumo:
Extracting human postural information from video sequences has proved a difficult research question. The most successful approaches to date have been based on particle filtering, whereby the underlying probability distribution is approximated by a set of particles. The shape of the underlying observational probability distribution plays a significant role in determining the success, both accuracy and efficiency, of any visual tracker. In this paper we compare approaches used by other authors and present a cost path approach which is commonly used in image segmentation problems, however is currently not widely used in tracking applications.
Resumo:
A central problem in visual perception concerns how humans perceive stable and uniform object colors despite variable lighting conditions (i.e. color constancy). One solution is to 'discount' variations in lighting across object surfaces by encoding color contrasts, and utilize this information to 'fill in' properties of the entire object surface. Implicit in this solution is the caveat that the color contrasts defining object boundaries must be distinguished from the spurious color fringes that occur naturally along luminance-defined edges in the retinal image (i.e. optical chromatic aberration). In the present paper, we propose that the neural machinery underlying color constancy is complemented by an 'error-correction' procedure which compensates for chromatic aberration, and suggest that error-correction may be linked functionally to the experimentally induced illusory colored aftereffects known as McCollough effects (MEs). To test these proposals, we develop a neural network model which incorporates many of the receptive-field (RF) profiles of neurons in primate color vision. The model is composed of two parallel processing streams which encode complementary sets of stimulus features: one stream encodes color contrasts to facilitate filling-in and color constancy; the other stream selectively encodes (spurious) color fringes at luminance boundaries, and learns to inhibit the filling-in of these colors within the first stream. Computer simulations of the model illustrate how complementary color-spatial interactions between error-correction and filling-in operations (a) facilitate color constancy, (b) reveal functional links between color constancy and the ME, and (c) reconcile previously reported anomalies in the local (edge) and global (spreading) properties of the ME. We discuss the broader implications of these findings by considering the complementary functional roles performed by RFs mediating color-spatial interactions in the primate visual system. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We asked 12 patients with left visual neglect to bisect the gap between two cylinders or to reach rapidly between them to a more distal target zone. Both tasks demanded a motor response but these responses were quite different in nature. The bisection response was a communicative act whereby the patient indicated the perceived midpoint. The reaching task carried no imperative to bisect the gap, only to maintain a safe distance from either cylinder while steering to the target zone. Optimal performance on either task could only be achieved by reference to the location of both cylinders. Our analysis focused upon the relative influence of the left and right cylinders on the lateral location of the response. In the bisection task, all neglect patients showed qualitatively the same asymmetry, with the left cylinder exerting less influence than the right. In the reaching task, the neglect group behaved like normal subjects, being influenced approximately equally by the two cylinders. This was true for all bar two of the patients, who showed clear neglect in both tasks. We conclude that the visuomotor processing underlying obstacle avoidance during reaching is preserved in most patients with left visual neglect. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Land related information about the Earth's surface is commonIJ found in two forms: (1) map infornlation and (2) satellite image da ta. Satellite imagery provides a good visual picture of what is on the ground but complex image processing is required to interpret features in an image scene. Increasingly, methods are being sought to integrate the knowledge embodied in mop information into the interpretation task, or, alternatively, to bypass interpretation and perform biophysical modeling directly on derived data sources. A cartographic modeling language, as a generic map analysis package, is suggested as a means to integrate geographical knowledge and imagery in a process-oriented view of the Earth. Specialized cartographic models may be developed by users, which incorporate mapping information in performing land classification. In addition, a cartographic modeling language may be enhanced with operators suited to processing remotely sensed imagery. We demonstrate the usefulness of a cartographic modeling language for pre-processing satellite imagery, and define two nerv cartographic operators that evaluate image neighborhoods as post-processing operations to interpret thematic map values. The language and operators are demonstrated with an example image classification task.
Resumo:
These are the full proceedings of the conference.
Resumo:
Lateral biases in visual perception have been demonstrated in normal individuals and in patients with unilateral brain lesions. It has been suggested that the absence of structural and functional asymmetries in schizophrenia could be due to a failure in lateralisation that may be most pronounced in those patients whose illness onset is at an early age. Here we examined lateral biases in patients with schizophrenia of an early onset (N = 21) and a late onset.(N = 19), and their respective age-matched control groups, using the greyscales task, a sensitive measure of asymmetries in visual processing. The stimuli consisted of two rectangles, one above the other, shaded in opposite directions and matched overall for darkness. Participants judged which of the two rectangles looked darker overall. Previous studies using this task in healthy participants have reported a reliable bias, such that the rectangle with the darker end on the left is selected preferentially. Whereas the late-onset patients in this study exhibited a perceptual bias of similar direction and magnitude to that of controls, this was not the case for the early-onset patients, who exhibited significantly less bias than their control group. The reduced perceptual bias seen in the early-onset group, but not the late-onset group, suggests an attenuation of right hemisphere mechanisms dedicated to processing vistiospatial information. The attenuated perceptual asymmetry in the early-onset group only may be consistent with the view that (i) an earlier illness onset reflects a greater loss of hemispheric differentiation and (ii) reduced functional asymmetries in the early-onset group are a manifestation of a failure to allocate functions to one or the other hemisphere.
Resumo:
Heterologous genes encoding proproteins, including proinsulin, generally produce mature protein when expressed in endocrine cells while unprocessed or partially processed protein is produced in non-endocrine cells. Proproteins, which are normally processed in the regulated pathway restricted to endocrine cells, do not always contain the recognition sequence for cleavage by furin, the endoprotease specific to the constitutive pathway, the principal protein processing pathway in non-endocrine cells. Human proinsulin consists of B-Chain-C-peptide-A-Chain and cleavage at the B/C and C/A junctions is required for processing. The B/C, but not the C/A junction, is recognised and cleaved in the constitutive pathway. We expressed a human proinsulin and a mutated proinsulin gene with an engineered furin recognition sequence at the C/A junction and compared the processing efficiency of the mutant and native proinsulin in Chinese Hamster Ovary cells. The processing efficiency of the mutant proinsulin was 56% relative to 0.7% for native proinsulin. However, despite similar levels of mRNA being expressed in both cell lines, the absolute levels of immunoreactive insulin, normalized against mRNA levels, were 18-fold lower in the mutant proinsulin-expressing cells. As a result, there was only a marginal increase in absolute levels of insulin produced by these cells. This unexpected finding may result from preferential degradation of insulin in non-endocrine cells which lack the protection offered by the secretory granules found in endocrine cells.
Resumo:
An efficient representation method for arbitrarily shaped image segments is proposed. This method includes a smart way to select wavelet basis to approximate the given image segment, with improved image quality and reduced computational load.