56 resultados para Illinois coal industry white paper
em University of Queensland eSpace - Australia
Resumo:
Stochastic simulation is a recognised tool for quantifying the spatial distribution of geological uncertainty and risk in earth science and engineering. Metals mining is an area where simulation technologies are extensively used; however, applications in the coal mining industry have been limited. This is particularly due to the lack of a systematic demonstration illustrating the capabilities these techniques have in problem solving in coal mining. This paper presents two broad and technically distinct areas of applications in coal mining. The first deals with the use of simulation in the quantification of uncertainty in coal seam attributes and risk assessment to assist coal resource classification, and drillhole spacing optimisation to meet pre-specified risk levels at a required confidence. The second application presents the use of stochastic simulation in the quantification of fault risk, an area of particular interest to underground coal mining, and documents the performance of the approach. The examples presented demonstrate the advantages and positive contribution stochastic simulation approaches bring to the coal mining industry
Resumo:
It has been observed in several Jameson cell installation where the source for flotation feed is deslime screens, that the recovery of coal particles greater than 0.5 mm is not as great as that of finer material. Consequently, a research project was undertaken at a CHPP in the Bowen Basin Queensland to assess the possibility of increasing the recovery of coarser particles (+0.5 mm) within the downcomer of the Jameson cell. The effect of decreasing turbulence and agitation in a commercial-scale downcomer was investigated to assess the effect oil the recovery of both coarse and fine coal particles. This paper details the findings of the test work, summarising the results relating to differences in the operating parameters within the downcomer. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The processes that take place during the development of a heating are difficult to visualise. Bulk coal self-heating tests at The University of Queensland (UQ) using a two-metre column are providing graphic evidence of the stages that occur during a heating. Data obtained from these tests, both temperature and corresponding off-gas evolution can be transformed into what is effectively a video-replay of the heating event. This is achieved by loading both sets of data into a newly developed animation package called Hotspot. The resulting animation is ideal for spontaneous combustion training purposes as the viewer can readily identify the different hot spot stages and corresponding off-gas signatures. Colour coding of the coal temperature, as the hot spot forms, highlights its location in the coal pile and shows its ability to migrate upwind. An added benefit of the package is that once a mine has been tested in the UQ two-metre column, there is a permanent record of that particular coals performance for mine personnel to view.