3 resultados para Ide
em University of Queensland eSpace - Australia
Resumo:
We recently reported that a linkage disequilibrium (LD) block on chromosome 10q encompassing the gene encoding insulin-degrading enzyme (IDE) harbors sequence variants that associate with Alzheimer disease (AD). Evidence also indicated effects upon a number of quantitative indices of AD severity, including age-at-onset (AAO). Since linkage of this immediate region to AAO has been shown in both AD and Parkinson disease (PD), we have explored the possibility that polymorphism within this LD block might also influence PD. Utilizing single nucleotide polymorphisms that delineate common haplotypes from this region, we observed significant evidence of association with AAO in an Australian PD case-control sample. Analyses were complemented with AAO data from two independent Swedish AD case samples, for which previously reported findings were replicated. Results were consistent between AD and PD, suggesting the presence of equivalent detrimental and protective alleles. These data highlight a genomic region in the proximity of IDE that may contribute to AD and PD in a similar manner.
Resumo:
The virtual (or minimum) height of the F-region (h'F), recorded over a number of solar cycles for I I equatorial and mid-latitude ionosonde stations, was used to deduce the hemispheric (i.e. southern or northern hemisphere) character of equatorial stations. The semi-annual median monthly height (h'F) variations consist of two components: major local summer maximum and winter sub-maximum (about 5 percent of the summer maximum). This hemispheric pattern was most consistently observed for equatorial stations (within 5degrees of the geomagnetic equator) in a period centred on the local midnight (21-03 LT) but was also present, to a lesser extent, at mid-latitude stations and at other time intervals. It is evident that the physical parameter h'F defines the hemispheric character of an equatorial station which has different (sometimes opposite) geographic and geomagnetic latitudes. There is a sharp transition in the latitudinal character of the stations on both sides of the equator leading to hypothesis that the equal maxima in h'F in December and June solstices are observed at a near-equator position labelled as ionosonde deduced equator (IDE). Such a signature was observed for an American equatorial (both geographic and geomagnetic) station Talara (Peru) which is an experimental support of the hypothesis. The IDE can be another useful parameter characterising the equatorial ionosphere. This finding reveals a new application of the standard ionosonde data in defining the geophysical character of equatorial stations, being an important contribution to space climatology. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A further progress has been made in defining the ionosonde deduced equator (IDE) which characterises a latitudinal transition from the northern to southern hemisphere. It is now possible to define the global IDE location as the locus of the average position between geographic and geomagnetic equators. A more complete insight to the phenomenon of the third equator (i.e. after geographic and geomagnetic equators) was made possible due to availability of ionospheric height (h'F) data from three stations positioned close to the IDE in the American and the far-east sectors. The IDE ionospheric signature (or E-type signature), detected at these stations, consists of bi-annual h'F height increases. This signature however is not consistently observed during solar cycle and at times, particularly at sunspot minimum, a weak hemispheric signature is observed (i.e. the northern or southern hemisphere signature). In general, the height increase at the IDE are considerably smaller (by a factor of 4) than at other equatorial locations, indicating that the ionosphere at the IDE location becomes less disturbed. It is suggested that the equatorial longitudinal regions which can be associated with more consistent E-type signature are located in the central Pacific and at the east coast of America, close to the intersection points of the geographic and geomagnetic equators. (C) 2003 Elsevier Ltd. All rights reserved.