23 resultados para IRRADIATION REACTORS

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a novel molecular sieve silica (MSS) membrane packed bed reactor (PBR) using a Cu/ZnO/Al2O3 catalyst was applied to the low-temperature water gas shift reaction (WGS). Best permeation results were H-2 permeances of 1.5 x 10(-6) mol(.)s(-1) m(-2) Pa-1, H-2/CO2 selectivities of 8 and H-2/N-2 selectivities of 18. It was shown that an operation with a sweep gas flow of 80 cm 3 min(-1), a feed flow rate of 50 cm(3) min(-1) and a H2O/CO molar ratio of one at 280 degreesC reached a 99% CO conversion. This is well above the thermodynamic equilibrium and achievable PBR conversion. Hydrophilic membranes underwent pore widening during the reaction while hydrophobic membranes indicated no such behaviour and also showed increased H-2 permeation with temperature, a characteristic of activated transport. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive therapy and autologous blood and marrow transplantation (ABMT) is an established post-remission treatment for acute myeloid leukemia (AML), although its exact role remains controversial and few data are available regarding longer-term outcomes. We examined the long-term outcome of patients with AML transplanted at a single center using uniform intensive therapy consisting of etoposide, melphalan and TBI. In all, 145 patients with AML underwent ABMT: 117 in first remission, 21 in second remission and seven beyond second remission. EFS and OS were significantly predicted by remission status (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence in situ hybridization (FISH) was performed to analyze the nitrifying microbial communities in an activated sludge reactor (ASR) and a fixed biofilm reactor (FBR) for piggery wastewater treatment. Heterotrophic oxidation and nitrification were occurring simultaneously in the ASR and the COD and nitrification efficiencies depend on the loads. In the FBR nitrification efficiency also depends on ammonium load to the reactor and nitrite was accumulated when free ammonia concentration was higher than 0.2 mg NH3-N/L. FISH analysis showed that ammonia-oxidizing bacteria (NSO1225) and denitrifying bacteria (RRP1088) were less abundant than other bacteria (EUB338) in ASR. Further analysis on nitrifying bacteria in the FBR showed that Nitrosomonas species (NSM156) and Nitrospira species (NSR1156) were the dominant ammonia-oxidizing and nitrite-oxidizing bacteria, respectively, in the piggery wastewater nitrification system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a comparative study how reactor configuration, sludge loading and air flowrate affect flow regimes, hydrodynamics, floc size distribution and sludge solids-liquid separation properties. Three reactor configurations were studied in bench scale activated sludge bubble column reactor (BCR), air-lift reactor (ALR) and aerated stirred reactor (ASR). The ASR demonstrated the highest capacity of gas holdup and resistance, and homogeneity in flow regimes and shearing forces, resulting in producing large numbers of small and compact floes. The fluid dynamics in the ALR created regularly directed recirculation forces to enhance the gas holdup and sludge flocculation. The BCR distributed a high turbulent flow regime and non-homogeneity in gas holdup and mixing, and generated large numbers of larger and looser floes. The sludge size distributions, compressibility and settleability were significantly influenced by the reactor configurations associated with the flow regimes and hydrodynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biocompatible polypeptide capsules with high enzyme loading and activity prepared by templating mesoporous silica spheres were used as biomimetic reactors for performing CaCO3 synthesis exclusively inside the capsule interior via urease-catalyzed urea hydrolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was to investigate the impacts of operating conditions and liquid properties on the hydrodynamics and volumetric mass transfer coefficient in activated sludge air-lift reactors. Experiments were conducted in internal and external air-lift reactors. The activated sludge liquid displayed a non-Newtonian rheological behavior. With an increase in the superficial gas velocity, the liquid circulation velocity, gas holdup and mass transfer coefficient increased, and the gas residence time decreased. The liquid circulation velocity, gas holdup and the mass transfer coefficient decreased as the sludge loading increased. The flow regime in the activated sludge air-lift reactors had significant effect on the liquid circulation velocity and the gas holdup, but appeared to have little impact on the mass transfer coefficient. The experimental results in this study were best described by the empirical models, in which the reactor geometry, superficial gas velocity and/or power consumption unit, and solid and fluid properties were employed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced biological phosphorus removal (EBPR) has been used at many wastewater treatment plants all over the world for many years. In this study a full-scale sludge with good EBPR was tested with P-release batch tests and combined FISH/MAR (fluorescence in situ hybridisation and microautoradiography). Proposed models of PAOs and GAOs (polyphosphate- and glycogen-accumulating organisms) and microbial methods suggested from studies of laboratory reactors were found to be applicable also on sludge from full-scale plants. Dependency of pH and the uptake of both acetate and propionate were studied and used for calculations for verifying the models and results from microbial methods. All rates found from the batch tests with acetate were higher than in the batch tests with propionate, which was explained by the finding that only those parts of the bacterial community that were able to take up acetate anaerobically were able to take up propionate anaerobically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study used a culture-independent molecular approach to investigate the archaeal community composition of thermophilic bioleaching reactors. Two culture samples, MTC-A and MTC-B, grown with different concentrations of chalcopyrite (CuFeS2), a copper sulfidic ore, at a temperature of 78 degrees C and pH 1.6 were studied. Phylogenetic analysis of the 16S rRNA genes revealed that both cultures consisted of Archaea belonging to the Sulfolobales. The 16S rRNA gene clone library of MTC-A grown with 4% (w/v) chalcopyrite was dominated by a unique phylotype related to Sulfolobus shibatae (69% of total clones). The remaining clones were affiliated with Stygiolobus azoricus (11%), Metallosphaera sp. J1 (8%), Acidianus infernus (2%), and a novel phylotype related to Sulfurisphaera ohwakuensis (10%). In contrast, the clones from MTC-B grown with 12% (w/v) chalcopyrite did not appear to contain Sulfolobus shibatae-like organisms. Instead the bioleaching consortium was dominated by clones related to Sulfurisphaera ohwakuensis (73.9% of total clones). The remaining microorganisms detected were similar to those found in MTC-A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to conduct a number of controlled digestions to obtain easily comparable cellulose solubilisation rates and to compare these rates to those found in the literature to see which operational differences were significant in affecting cellulose degradation during anaerobic digestion. The results suggested that differences in volumetric cellulose solubilisation rates were not indicative of the true performance of cellulose digestion systems. When cellulose solubilisation rates were normalised by the mass of cellulose in the reactor at each time step, the comparison of the rates became more meaningful. Cellulose solubilisation was surface area limited. Therefore, changes in the loading rate of cellulose to the reactor altered the volumetric solubilisation rate without changing the mass normalised rate. Comparison of mass normalised solubilisation rates from this study and the literature demonstrated that differences in reactor configuration and operational conditions did not significantly impact on the solubilisation rate whereas the difference in composition of the microbial communities showed a marked effect. This work highlights the importance of using appropriately normalised data when making comparisons between systems with differing operational conditions. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the effect of adjuvant whole brain irradiation (WBI) after surgery or radiosurgery for solitary brain metastases in a Phase III multicentre trial with randomization to 30-36 Gy WBI or observation. The study was closed early due to slow accrual after 19 patients (WBI 10, observation 9). There was no difference in CNS failure-free survival or overall survival between the arms. There was a trend to reduced CNS relapse with WBI (30% versus 78%, P = 0.12). Limited analysis of quality of life and neurocognitive function data revealed no evidence of difference between the arms. Our results are not inconsistent with two larger randomized trials and support the use of upfront WBI to decrease brain recurrence in this setting. (c) 2006 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For several decades, a dose of 25 kGy of gamma irradiation has been recommended for terminal sterilization of medical products, including bone allografts. Practically, the application of a given gamma dose varies from tissue bank to tissue bank. While many banks use 25 kGy, some have adopted a higher dose, while some choose lower doses, and others do not use irradiation for terminal sterilization. A revolution in quality control in the tissue banking industry has occurred in line with development of quality assurance standards. These have resulted in significant reductions in the risk of contamination by microorganisms of final graft products. In light of these developments, there is sufficient rationale to re-establish a new standard dose, sufficient enough to sterilize allograft bone, while minimizing the adverse effects of gamma radiation on tissue properties. Using valid modifications, several authors have applied ISO standards to establish a radiation dose for bone allografts that is specific to systems employed in bone banking. These standards, and their verification, suggest that the actual dose could be significantly reduced from 25 kGy, while maintaining a valid sterility assurance level (SAL) of 10−6. The current paper reviews the methods that have been used to develop radiation doses for terminal sterilization of medical products, and the current trend for selection of a specific dose for tissue banks.