3 resultados para INTERSTITIUM

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interrelationship between myofibroblasts and fibrogenic growth factors in the pathogenesis of renal fibrosis is poorly defined. A temporal and spatial analysis of myofibroblasts, their proliferation and death, and presence of transforming growth factor-beta1 (TGF-beta1) and platelet-derived growth factor-B (PDGF-B) was carried out in an established rodent model in which chronic renal scarring and fibrosis occurs after healed renal papillary necrosis (RPN), similar to that seen with analgesic nephropathy. Treated and control groups (N = 6 and 4, respectively) were compared at 2, 4, 8 and 12 weeks. A positive relationship was found between presence of tubulo-interstitial myofibroblasts and development of fibrosis. Apoptotic myofibroblasts were identified in the interstitium and their incidence peaked 2 weeks after treatment. Levels of interstitial cell apoptosis and fibrosis were negatively correlated over time (r = -0.57, p < 0.01 ), suggesting that as apoptosis progressively failed to limit myofibroblast numbers, fibrosis increased. In comparison with the diminishing apoptosis in the interstitium, the tubular epithelium had progressively increasing levels of apoptosis over time, indicative of developing atrophy of nephrons. TGF-beta1 protein expression had a close spatial and temporal association with fibrosis and myofibroblasts, whilst PDGF-B appeared to have a closer link with populations of other chronic inflammatory cells such as infiltrating lymphocytes. Peritubular myofibroblasts were often seen near apoptotic cells in the tubular epithelium, suggestive of a paracrine toxic effect of factor/s secreted by the myofibroblasts. In vitro , TGF-beta1 was found to be toxic to renal tubular epithelial cells. These findings suggest an interaction between myofibroblasts, their deletion by apoptosis, and the presence of the fibrogenic growth factor TGF-beta1 in renal fibrosis, whereby apoptotic deletion of myofibroblasts could act as a controlling factor in progression of fibrosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 This study has administered pirfenidone (5-methyl-l-phenyl-2-[1H]-pyridone) or amiloride to attenuate the remodelling and associated functional changes, especially an increased cardiac stiffness, in DOCA-salt hypertensive rats. 2 In control rats, the elimination half-life of pirfenidone following a single intravenous dose of 200 mg kg(-1) was 37 min while oral bioavailability at this dose was 25.7%. Plasma pirfenidone concentrations in control rats averaged 1.9 +/- 0.1 mug ml(-1) over 24 It after 14 days' administration as a 0.4% mixture in food. 3 Pirfenidone (approximately 250-300 mg kg(-1) day(-1) as 0.4% in food) and amiloride (I mg kg-1 day(-1) sc) were administered for 2 weeks starting 2 weeks post-surgery. Pirfenidone but not amiloride attenuated ventricular hypertrophy (2.69 +/- 0.09, UNX 2.01 +/- 0.05. DOCA-salt 3.11 +/- 0.09 mg kg(-1) body wt) without lowering systolic blood pressure. 4 Collagen deposition was significantly increased in the interstitium after 2 weeks and further increased with scarring of the left ventricle after 4 weeks; pirfenidone and amiloride reversed the increases and prevented further increases. This accumulation of collagen was accompanied by an increase in diastolic stiffness constant; both amiloride and pirfenidone, reversed this increase. 5 Noradrenaline potency (positive chronotropy) was decreased in right atria (neg log EC50: control 6.92 +/- 0.06; DOCA-salt 6.64 +/- 0.08); pirfenidone but not amiloride reversed this change. Noradrenaline was a more potent vasoconstrictor in thoracic aortic rings (neg log EC50: control 6.91 +/- 0.10; DOCA-salt 7.90 +/- 0.07); pirfenidone treatment did not change noradrenaline potency. 6 Thus, pirfenidone and amiloride reverse and prevent cardiac remodelling and the increased cardiac stiffness without reversing the increased vascular responses to noradrenaline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gene encoding the matricellular protein secreted protein, acidic and rich in cysteine (SPARC) was identified in a screen for genes expressed sex-specifically during mouse gonad development, as being strongly upregulated in the male gonad from very early in testis development. We present here a detailed analysis of SPARC gene and protein expression during testis development, from 11.5 to 15.5 days post coitum (dpc). Section in situ hybridization analysis revealed that SPARC mRNA is expressed by the Sertoli cells in the testis cords and the fetal Leydig cells, found within the interstitial space between the testis cords. Immunodetection with anti-SPARC antibody showed that the protein was located inside the testis cords, within the cytoplasm of Sertoli and germ cells. In the interstitium, SPARC was present intracellularly within the Leydig cells. The internalization of SPARC in Sertoli, Leydig, and germ cells suggests that it plays an intracellular regulatory role in these cell types during fetal testis development.