149 resultados para INSECT HEMOLYMPH

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An artificial diet incorporating insect cells originally developed for Trichogramma australicum Girault (Hymenoptera: Tricho-grammatidae) was successfully used to rear Trichogramm pretiosum Riley (Hymenoptera: Trichogrammatidae). To refine the diet, individual components were removed. Chicken egg yolk and the insect cells were identified as the most important components for T. pretiosum development. Their removal resulted in few pupae and no adults. Removal of Grace's insect medium, a common component of artificial diets, was found to markedly improve the development of T pretiosum, producing 60% larva to pupa transition and 19% pupa to adult transition. There was no significant difference in T pretiosum development on diets in which milk powder, malt powder or infant formula were interchanged, despite differences in nutrient composition. The use of yeast extract resulted in significantly higher survival to the adult stage when compared with yeast hydrolysate enzymatic and a combination of yeast extract and yeast hydrolysate enzymatic. Comparison of four antimicrobial agents showed the antibacterial agent Gentamycin and the antifungal agent Nystatin had the least detrimental effect on T pretiosum development. The use of insect cell line diets has the potential to simplify artificial diet production and significantly reduce T pretiosum production costs in Australia compared to diets using insect hemolymph or the use of natural or factitious hosts. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipophorin is the major lipid carrier in insects, but various observations indicate that lipophorin is also involved in immune reactions. To examine a possible role of lipophorin in defence reactions, we mixed hemolymph plasma from Galleria mellonella with LPS and noticed that lipophorin forms detergent-insoluble aggregates, while most other plasma proteins are not affected. Lipophorin particles isolated by low-density gradient centrifugation retained LPS-induced aggregation properties, which suggested to us that these immune-reactive particles are able to recognise LPS and respond by forming insoluble aggregates. Antibodies against LPS-binding proteins, such as immulectin-2 and beta-1,3-glucan binding protein, cross-reacted with proteins associated with purified lipophorin particles. To examine whether LPS-mediated aggregates inactivate LPS, we added LPS-lipophorin mixtures to purified lipophorin particles and monitored aggregate formation. Under these conditions lipophorin did not form insoluble aggregates, which indicates that lipophorin particles sequester LPS into non-toxic aggregates. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polydnaviruses are associated with certain parasitoid wasps and are introduced into the body cavity of the host caterpillar during oviposition. Some of the viral genes are expressed in host tissues and corresponding proteins are secreted into the hemocoel causing suppression of the host immune system. The Cotesia rubecula polydnavirus gene product, CrV1, effectively inactivates hemocytes by mediating cytoskeleton break-down. A precondition for the CrV1 function is the incorporation of the extracellular protein by hemocytes. Here, we show that a coiled-coil domain containing a putative leucine zipper is required for CrV1 function, since removal of this domain abolishes binding and uptake of the CrV1 protein by hemocytes. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trichogramma species are mass-produced for biological control using host eggs. Artificial diets have been developed to reduce production costs, however, most include insect haemolymph as a major component, which still results in a significant expense. Medium conditioned with insect cell lines has produced some success as a haemolymph replacement in artificial diets for several parasitoid wasp species. Trichogramma australicum Girault (Hymenoptera: Trichogrammatidae) was the first species to develop successfully to the adult stage on diets containing concentrated HeliothiS zea (Boddie) (Lepidoptera: Noctuidae) cells. Tricho-gramma pretiosum Riley (Hymenoptera: Trichogrammatidae) was subsequently grown to the adult stage on a similar cell line diet. This success encouraged a systematic investigation into the use of insect cell lines in Trichogramma artificial diets. We compared the effect of diets containing insect cells with diets containing conditioned cell line media. Diets containing insect cells produced significantly more pupae than diets containing conditioned medium and, although not significant, produced a higher number of adults. Second, we compared the effect of diets containing cell lines established from ovary-associated tissue of H. zea and embryo tissue of Aedes albopictus (Skuse) (Diptera: Culicidae) on T pretiosum development. Trichogramma pretiosum development was not significantly different on diets containing cells from the two origins and tissue types. Third, the effect of cell storage on T pretiosum development was observed. HeliothiS zea cells in medium were stored at 4 degrees C and room temperature (22 degrees C for one, two, four and seven days before addition to artificial diets. Cell viability was calculated for these storage treatments. HeliothiS zea cells could be stored at 4 degrees C for up to seven days with no detrimental effect on T pretiosum development. Tricho-gramma pretiosum development did not depend on cell viability. The use of insect cell lines as a haemolymph replacement has the potential to significantly reduce production costs and simplify Trichogramma artificial diets with the eventual aim of replacing host production in mass rearing facilities. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many insect parasitoids that deposit their eggs inside immature stages of other insect species inactivate the cellular host defence to protect the growing embryo from encapsulation. Suppression of encapsulation by polydnavirus-encoded immune-suppressors correlates with specific alterations in hemocytes, mainly cytoskeletal rearrangements and actin-cytoskeleton breakdown. We have previously shown that the Cotesia rubecula polydnavirus gene product CrV1 causes immune suppression when injected into the host hemocoel. CrV1 is taken up by hemocytes although no receptors have been found to bind the protein. Instead CrV1 uptake depends on dimer formation, which is required for interacting with lipophorin, suggesting a CrV1-lipophorin complex internalisation by hemocytes. Since treatment of hemocytes with oligomeric lectins and cytochalasin D can mimic the effects of CrV1, we propose that some dimeric and oligomeric adhesion molecules are able to cross-link receptors on the cell surface and depolymerise actin by leverage-mediated clearance reactions in the hemolymph.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age is a critical determinant of the ability of most arthropod vectors to transmit a range of human pathogens. This is due to the fact that most pathogens require a period of extrinsic incubation in the arthropod host before pathogen transmission can occur. This developmental period for the pathogen often comprises a significant proportion of the expected lifespan of the vector. As such, only a small proportion of the population that is oldest contributes to pathogen transmission. Given this, strategies that target vector age would be expected to obtain the most significant reductions in the capacity of a vector population to transmit disease. The recent identification of biological agents that shorten vector lifespan, such as Wolbachia, entomopathogenic fungi and densoviruses, offer new tools for the control of vector-borne diseases. Evaluation of the efficacy of these strategies under field conditions will be possible due to recent advances in insect age-grading techniques. Implementation of all of these strategies will require extensive field evaluation and consideration of the selective pressures that reductions in vector longevity may induce on both vector and pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies were undertaken to determine if replication-deficient Semliki Forest virus expression vectors could be successfully used to express foreign gene constructs in insect cell lines. Using green fluorescent protein (GFP) as a marker we recorded infection levels of nearly 100% in the Aedes albopictus cell lines C6/36 and Aa23T, as well as in the Ae. aegypti cell line MOS20. The virus was capable of infecting an Anopheles gambiae cell line MOS55. The amount of GFP protein produced in each cell line was quantified. Northern analysis of viral transcription revealed the presence of novel transcripts in Aa23T, C6/36, and MOS55 cell lines, but not in the BHK or MOS20. The initial characterization of these transcripts is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wolbachia are intracellular microorganisms that form maternally-inherited infections within numerous arthropod species. These bacteria have drawn much attention, due in part to the reproductive alterations that they induce in their hosts including cytoplasmic incompatibility (CI), feminization and parthenogenesis. Although Wolbachia's presence within insect reproductive tissues has been well described, relatively few studies have examined the extent to which Wolbachia infects other tissues. We have examined Wolbachia tissue tropism in a number of representative insect hosts by western blot, dot blot hybridization and diagnostic PCR. Results from these studies indicate that Wolbachia are much more widely distributed in host tissues than previously appreciated. Furthermore, the distribution of Wolbachia in somatic tissues varied between different Wolbachia/host associations. Some associations showed Wolbachia disseminated throughout most tissues while others appeared to be much more restricted, being predominantly limited to the reproductive tissues. We discuss the relevance of these infection patterns to the evolution of Wolbachia/host symbioses and to potential applied uses of Wolbachia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of controlling vector-borne disease through the development and release of transgenic insect vectors has recently gained popular support and is being actively pursued by a number of research laboratories around the world. Several technical problems must be solved before such a strategy could be implemented: genes encoding refractory traits (traits that render the insect unable to transmit the pathogen) must be identified, a transformation system for important vector species has to be developed, and a strategy to spread the refractory trait into natural vector populations must be designed. Recent advances in this field of research make it seem likely that this technology will be available in the near future. In this paper we review recent progress in this area as well as argue that care should be taken in selecting the most appropriate disease system with which to first attempt this form of intervention. Much attention is currently being given to the application of this technology to the control of malaria, transmitted by Anopheles gambiae in Africa. While malaria is undoubtedly the most important vector-borne disease in the world and its control should remain an important goal, we maintain that the complex epidemiology of malaria together with the intense transmission rates in Africa may make it unsuitable for the first application of this technology. Diseases such as African trypanosomiasis, transmitted by the tsetse fly, or unstable malaria in India may provide more appropriate initial targets to evaluate the potential of this form of intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A diagnostic PCR assay was designed based on conserved regions of previously sequenced densovirus genomic DNA isolated from mosquitoes. Application of this assay to different insect cell lines resulted in a number of cases of consistent positive amplification of the predicted size fragment. Positive PCR results were subsequently confirmed to correlate with densovirus infection by both electron microscopy and indirect fluorescent antibody test. In each case the nucleotide sequence of the amplified PCR fragments showed high identity to previously reported densoviruses isolated from mosquitoes. Phylogenetic analysis based on these sequences showed that two of these isolates were examples of new densoviruses. These viruses could infect and replicate in mosquitoes when administered orally or parenterally and these infections were largely avirulent. In one virus/mosquito combination vertical transmission to progeny was observed. The frequency with which these viruses were detected would suggest that they may be quite common in insect cell lines.